The higher dimensional extensions for the Calogero Korteweg-de Vries equation

被引:0
作者
Toda, K [1 ]
Yu, SJ [1 ]
机构
[1] Ritsumeikan Univ, Dept Phys, Shiga 5258577, Japan
来源
PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79 | 2000年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First of all, we show the existence of the Lax pair for the Calogero Korteweg-de Vries(CKdV) equation, Next we modify T operator that is one of the Lax pair for the CKdV equation for the search of the (2 + 1)-dimensional case and propose a new equation in (2 + 1) dimensions. We call it the (2 + 1)-dimensional CKdV equation. And then we discuss the modification of L operator that is another of the Lax pair of the CKdV equation. Moreover we attempt the modification of L and T operators.
引用
收藏
页码:203 / 206
页数:4
相关论文
共 10 条
[1]  
Bogoyavlenskii O I., 1990, Math. USSR Izv, V34, P245, DOI [10.1070/IM1990v034n02ABEH000628, DOI 10.1070/IM1990V034N02ABEH000628]
[2]   METHOD TO GENERATE SOLVABLE NONLINEAR EVOLUTION EQUATIONS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 14 (12) :443-447
[3]  
CALOGERO F, 1982, SPECTRAL TRANSFORM S, V1
[4]  
DRYUMA VS, 1974, JETP LETT+, V19, P387
[5]   SOME NEW INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS IN 2 + 1 DIMENSIONS [J].
KONOPELCHENKO, BG ;
DUBROVSKY, VG .
PHYSICS LETTERS A, 1984, 102 (1-2) :15-17
[6]   Relationships between differential substitutions and Hamiltonian structures of the Korteweg-de Vries equation [J].
Pavlov, MV .
PHYSICS LETTERS A, 1998, 243 (5-6) :295-300
[7]   The Bogoyavlenskii-Schiff hierarchy and integrable equations in (2+1) dimensions [J].
Toda, K ;
Yu, SJ ;
Fukuyama, T .
REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) :247-254
[8]  
TODA K, IN PRESS J NONLINEAR
[9]   N-soliton solutions to a (2+1)-dimensional integrable equation [J].
Yu, SJ ;
Toda, K ;
Fukuyama, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (50) :10181-10186
[10]  
Zaharov V. E., 1974, Funct. Anal. its Appl, V8, P226