Scaling Theory of Complex Coacervate Core Micelles

被引:43
作者
Rumyantsev, Artem M. [1 ]
Zhulina, Ekaterina B. [2 ,3 ]
Borisov, Oleg V. [1 ,2 ,3 ,4 ]
机构
[1] UPPA, CNRS, Inst Sci Analyt & Physicochim Environm & Mat, UMR 5254, Pau, France
[2] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
[3] Natl Res Univ Informat Technol Mech & Opt, St Petersburg 197101, Russia
[4] Peter Great St Petersburg State Polytech Univ, St Petersburg 195251, Russia
来源
ACS MACRO LETTERS | 2018年 / 7卷 / 07期
基金
俄罗斯科学基金会;
关键词
DIBLOCK POLYAMPHOLYTE SOLUTIONS; BLOCK-COPOLYMER MICELLES; CHARGED POLYELECTROLYTES; DRUG-DELIVERY; STABILITY; DIAGRAM;
D O I
10.1021/acsmacrolett.8b00316
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We propose scaling theory of complex coacervate core micelles (C3Ms). Such micelles arise upon electrostatically driven coassembly of bis-hydrophilic ionic/nonionic diblock copolymers with oppositely charged ionic blocks or bis-hydrophilic diblock copolymers with oppositely charged macro ions. Structural properties of the C3Ms are studied as a function of the copolymer composition, degree of ionization of the ionic blocks, and ionic strength of the solution. It is demonstrated that at sufficiently large length of the polyelectrolyte blocks the C3Ms may exhibit polymorphism; that is, morphological transitions from spherical to cylindrical micelles and further to lamellar structure or polymersomes may be triggered by increasing salt concentration. A diagram of states of micellar aggregates in the salt concentration/ionization degree coordinates is constructed, and scaling laws for experimentally measurable properties, e.g., micelle aggregation number and core and corona sizes, are found.
引用
收藏
页码:811 / 816
页数:11
相关论文
共 33 条
  • [1] Birshtein T. M., 1983, POLYM SCI USSR, V25, P834
  • [2] Blocher W. C., 2017, WIRES NANOMED NANOBI, V9, P835
  • [3] Self-Assembled Structures of Amphiphilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment
    Borisov, Oleg V.
    Zhulina, Ekaternia B.
    Leermakers, Frans A. M.
    Mueller, Axel H. E.
    [J]. SELF ORGANIZED NANOSTRUCTURES OF AMPHIPHILIC BLOCK COPOLYMERS I, 2011, 241 : 57 - 129
  • [4] Phase diagram of diblock polyampholyte solutions
    Castelnovo, M
    Joanny, JF
    [J]. MACROMOLECULES, 2002, 35 (11) : 4531 - 4538
  • [5] STAR SHAPED POLYMERS - A MODEL FOR THE CONFORMATION AND ITS CONCENTRATION-DEPENDENCE
    DAOUD, M
    COTTON, JP
    [J]. JOURNAL DE PHYSIQUE, 1982, 43 (03): : 531 - 538
  • [6] Theory of polyelectrolyte complexation-Complex coacervates are self-coacervates
    Delaney, Kris T.
    Fredrickson, Glenn H.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (22)
  • [7] Block copolymer micelles: preparation, characterization and application in drug delivery
    Gaucher, G
    Dufresne, MH
    Sant, VP
    Kang, N
    Maysinger, D
    Leroux, JC
    [J]. JOURNAL OF CONTROLLED RELEASE, 2005, 109 (1-3) : 169 - 188
  • [8] FORMATION OF POLYION COMPLEX MICELLES IN AN AQUEOUS MILIEU FROM A PAIR OF OPPOSITELY-CHARGED BLOCK-COPOLYMERS WITH POLY(ETHYLENE GLYCOL) SEGMENTS
    HARADA, A
    KATAOKA, K
    [J]. MACROMOLECULES, 1995, 28 (15) : 5294 - 5299
  • [9] Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions
    Kabanov, AV
    Bronich, TK
    Kabanov, VA
    Yu, K
    Eisenberg, A
    [J]. MACROMOLECULES, 1996, 29 (21) : 6797 - 6802
  • [10] Pluronic® block copolymers:: novel functional molecules for gene therapy
    Kabanov, AV
    Lemieux, P
    Vinogradov, S
    Alakhov, V
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (02) : 223 - 233