Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon

被引:135
作者
Chen, Zhaoyang [1 ]
Su, Xiaozhi [2 ]
Ding, Jie [1 ]
Yang, Na [3 ]
Zuo, Wenbin [4 ]
He, Qinye
Wei, Zhiming [1 ]
Zhang, Qiao [1 ]
Huang, Jian [1 ]
Zhai, Yueming [1 ]
机构
[1] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[3] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangzhou 510006, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Key Lab Artificial Micro, Hubei Key Lab Nucl Solid Phys, Wuhan 430072, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2022年 / 308卷
基金
中国国家自然科学基金;
关键词
Dual-atomic-site catalysts; Single -atom catalysts; Spin; -state; Oxygen reduction reaction; ENERGY CALCULATIONS; OXIDATION; CATALYSTS; DESIGN; STATE;
D O I
10.1016/j.apcatb.2022.121206
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dual-atomic-site catalysts (DASCs), as an extension of single-atom catalysts (SACs), have attracted increasing attention owing to the synergistic effect. However, the study of DASCs is still at the early stages and mainly based on metal atom pairs. More experimental and theoretical exploration needed for further guiding the reasonable design of diatomic active sites. Herein, remarkable activity for oxygen reduction reaction (ORR) of Se-1-NC single -atom catalyst was discovered, and then Fe/Se dual-atom catalysts were constructed to demonstrate the dual -atom sites synergistic effect. Encouraging, the Fe1Se1-NC catalyst displays significant enhancement for ORR towards Fe-1-NC and Se-1-NC in both alkaline and acid electrolytes. Spectroscopic characterizations and theo-retical calculations reveal that there are multiple effects for the introduction of Se, especially for supplying new active sites, and effectively tuning charge redistribution and the spin-state of Fe active sites, which presenting a new strategy to improve the electrochemical performance based on the metal-nonmetal dual-atomic-site catalysts.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions [J].
Ahsan, Md Ariful ;
Santiago, Alain R. Puente ;
Hong, Yu ;
Zhang, Ning ;
Cano, Manuel ;
Rodriguez-Castellon, Enrique ;
Echegoyen, Luis ;
Sreenivasan, Sreeprasad T. ;
Noveron, Juan C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (34) :14688-14701
[2]   Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction [J].
Bai, Lu ;
Duan, Zhiyao ;
Wen, Xudong ;
Si, Rui ;
Guan, Jingqi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 257
[3]   Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].
Bajdich, Michal ;
Garcia-Mota, Monica ;
Vojvodic, Aleksandra ;
Norskov, Jens K. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13521-13530
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance [J].
Chen, Yuanjun ;
Gao, Rui ;
Ji, Shufang ;
Li, Haijing ;
Tang, Kun ;
Jiang, Peng ;
Hu, Haibo ;
Zhang, Zedong ;
Hao, Haigang ;
Qu, Qingyun ;
Liang, Xiao ;
Chen, Wenxing ;
Dong, Juncai ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3212-3221
[6]   Investigation of Fe2N@carbon encapsulated in N-doped graphene-like carbon as a catalyst in sustainable zinc-air batteries [J].
Chen, Zhao-Yang ;
Li, Ya-Nan ;
Lei, Ling-Li ;
Bao, Shu-Juan ;
Wang, Min-Qiang ;
Heng-Liu ;
Zhao, Zhi-Liang ;
Xu, Mao-Wen .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (23) :5670-5676
[7]   Unraveling the Origin of Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spin-State Tuning [J].
Chen, Zhaoyang ;
Niu, Huan ;
Ding, Jie ;
Liu, Heng ;
Chen, Pei-Hsuan ;
Lu, Yi-Hsuan ;
Lu, Ying-Rui ;
Zuo, Wenbin ;
Han, Lei ;
Guo, Yuzheng ;
Hung, Sung-Fu ;
Zhai, Yueming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (48) :25404-25410
[8]   Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism [J].
Chen, Zhe ;
Liao, Xiaobin ;
Sun, Congli ;
Zhao, Kangning ;
Ye, Daixin ;
Li, Jiantao ;
Wu, Gang ;
Fang, Jianhui ;
Zhao, Hongbin ;
Zhang, Jiujun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 288
[9]   Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :1795-1800
[10]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51