On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows

被引:32
作者
Cang, Shijian [1 ,2 ]
Wu, Aiguo [1 ]
Wang, Zenghui [3 ]
Chen, Zengqiang [4 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, Tianjin 300072, Peoples R China
[2] Tianjin Univ Sci & Technol, Dept Ind Design, Tianjin 300457, Peoples R China
[3] Univ South Africa, Dept Elect & Min Engn, ZA-1710 Florida, South Africa
[4] Nankai Univ, Coll Comp & Control Engn, Tianjin 300071, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Generalized Hamiltonian system; 3-D dynamical system; Chaos; Lyapunov exponents; CANONICAL DYNAMICS; SYSTEM; ATTRACTORS; ORDER;
D O I
10.1016/j.chaos.2017.03.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the generalized Hamiltonian system, a new method for constructing a class of three-dimensional (3-D) chaotic systems is presented in this paper. After choosing the proper parameters of skew-symmetric matrix, dissipative matrix and external input, one smooth 3-D chaotic system is proposed to show the effectiveness of the proposed method. Numerical simulation techniques, including phase portraits, Poincare sections, Lyapunov exponents and bifurcation diagram, illustrate that the proposed 3-D system has periodic, quasi-periodic and chaotic flows under the conditions of different parameters. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 39 条
[11]   Nonlinear excitation control of multi-machine power systems with structure preserving models based on Hamiltonian system theory [J].
Hao, J ;
Wang, J ;
Chen, C ;
Shi, LB .
ELECTRIC POWER SYSTEMS RESEARCH, 2005, 74 (03) :401-408
[12]   SOME SIMPLE CHAOTIC FLOWS - REMARK [J].
HOOVER, WG .
PHYSICAL REVIEW E, 1995, 51 (01) :759-760
[13]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[14]   Ergodic time-reversible chaos for Gibbs' canonical oscillator [J].
Hoover, William Graham ;
Sprott, Julien Clinton ;
Patra, Puneet Kumar .
PHYSICS LETTERS A, 2015, 379 (45-46) :2935-2940
[15]   Stochastic fractional optimal control of quasi-integrable Hamiltonian system with fractional derivative damping [J].
Hu, F. ;
Zhu, W. Q. ;
Chen, L. C. .
NONLINEAR DYNAMICS, 2012, 70 (02) :1459-1472
[16]   Canonical transformations used to derive robot control laws from a port-controlled Hamiltonian system perspective [J].
Ignacio Mulero-Martinez, Juan .
AUTOMATICA, 2008, 44 (09) :2435-2440
[17]   CONTROL OF CHAOS IN THE HAMILTONIAN SYSTEM OF MIMAS-TETHYS [J].
Khan, Ayub ;
Shahzad, Mohammad .
ASTRONOMICAL JOURNAL, 2008, 136 (05) :2201-2203
[18]   Hamiltonian of the V15 spin system from first-principles density-functional calculations [J].
Kortus, J ;
Hellberg, CS ;
Pederson, MR .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3400-3403
[19]   Input disturbance suppression for port-controlled hamiltonian system via the internal model method [J].
Li, Changsheng ;
Wang, Yuzhen .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2013, 11 (02) :268-276
[20]   Hamiltonian system-based analytic modeling of the free rectangular thin plates' free vibration [J].
Li, Rui ;
Wang, Bo ;
Li, Gang ;
Tian, Bin .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) :984-992