On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows

被引:30
作者
Cang, Shijian [1 ,2 ]
Wu, Aiguo [1 ]
Wang, Zenghui [3 ]
Chen, Zengqiang [4 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, Tianjin 300072, Peoples R China
[2] Tianjin Univ Sci & Technol, Dept Ind Design, Tianjin 300457, Peoples R China
[3] Univ South Africa, Dept Elect & Min Engn, ZA-1710 Florida, South Africa
[4] Nankai Univ, Coll Comp & Control Engn, Tianjin 300071, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Generalized Hamiltonian system; 3-D dynamical system; Chaos; Lyapunov exponents; CANONICAL DYNAMICS; SYSTEM; ATTRACTORS; ORDER;
D O I
10.1016/j.chaos.2017.03.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the generalized Hamiltonian system, a new method for constructing a class of three-dimensional (3-D) chaotic systems is presented in this paper. After choosing the proper parameters of skew-symmetric matrix, dissipative matrix and external input, one smooth 3-D chaotic system is proposed to show the effectiveness of the proposed method. Numerical simulation techniques, including phase portraits, Poincare sections, Lyapunov exponents and bifurcation diagram, illustrate that the proposed 3-D system has periodic, quasi-periodic and chaotic flows under the conditions of different parameters. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 39 条
[1]   A limit set stabilization by means of the Port Hamiltonian system approach [J].
Aguilar-Ibanez, Carlos ;
Mendoza-Mendoza, Julio A. ;
Martinez, Juan C. ;
de Jesus Rubio, Jose ;
Suarez-Castanon, Miguel S. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (12) :1739-1750
[2]  
Cang SJ, 2008, KYBERNETIKA, V44, P455
[3]   Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems [J].
Cang, Shijian ;
Wu, Aiguo ;
Wang, Zenghui ;
Xue, Wei ;
Chen, Zengqiang .
NONLINEAR DYNAMICS, 2016, 83 (04) :1987-2001
[4]   A general method for exploring three-dimensional chaotic attractors with complicated topological structure based on the two-dimensional local vector field around equilibriums [J].
Cang, Shijian ;
Wu, Aiguo ;
Wang, Zhonglin ;
Wang, Zenghui ;
Chen, Zengqiang .
NONLINEAR DYNAMICS, 2016, 83 (1-2) :1069-1078
[5]   Adaptive Sliding Mode Controller Design for Projective Synchronization of Different Chaotic Systems with Uncertain Terms and External Bounded Disturbances [J].
Cang, Shijian ;
Wang, Zenghui ;
Chen, Zengqiang .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[6]   A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system [J].
Cang, Shijian ;
Qi, Guoyuan ;
Chen, Zengqiang .
NONLINEAR DYNAMICS, 2010, 59 (03) :515-527
[7]   On the symplectic structures for geometrical theories [J].
Cartas-Fuentevilla, R .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :644-650
[8]  
Dodd PJ, 2004, PHYS REV A, V69, P521
[9]  
Farina D, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.036407
[10]   NOISY CHAOS IN A QUASI-INTEGRABLE HAMILTONIAN SYSTEM WITH TWO DOF UNDER HARMONIC AND BOUNDED NOISE EXCITATIONS [J].
Gan, C. B. ;
Wang, Y. H. ;
Yang, S. X. ;
Lei, H. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (05)