Strongly Coupled MoS2 Nanocrystal/Ti3C2 Nanosheet Hybrids Enable High-Capacity Lithium-Ion Storage

被引:45
作者
Hu, Zhongli [1 ]
Kuai, Xiaoxiao [1 ]
Chen, Juntong [1 ]
Sun, Pengfei [1 ]
Zhang, Qiaobao [2 ]
Wu, Hong-Hui [3 ]
Zhang, Li [1 ]
机构
[1] Soochow Univ, Coll Energy, Suzhou 215006, Peoples R China
[2] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Fujian, Peoples R China
[3] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
high-capacity anode; high-rate lithium storage; molybdenum disulfide; strongly coupled hybrids; Ti3C2; MXene; PERFORMANCE; COMPOSITE; MXENE; ANODE; INTERCALATION;
D O I
10.1002/cssc.201902702
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Smart integration of transition-metal sulfides/oxides/nitrides with the conductive MXene to form hybrid materials is very promising in the development of high-performance anodes for next-generation Li-ion batteries (LIBs) owing to their advantages of high specific capacity, favorable Li+ intercalation structure, and superior conductivity. Herein, a facile route was proposed to prepare strongly coupled MoS2 nanocrystal/Ti3C2 nanosheet hybrids through freeze-drying combined with a subsequent thermal process. The Ti3C2 host could enhance the reaction kinetics and buffer the volume change of MoS2 at a low content (8.87 wt %). Thus, the MoS2/Ti3C2 hybrids could deliver high rate performance and excellent cycling durability. As such, high reversible capacities of 835.1 and 706.0 mAh g(-1) could be maintained after 110 cycles at 0.5 A g(-1) and 1390 cycles at 5 A g(-1), respectively, as well as an outstanding rate capability with a capacity retention over 65.8 % at 5 A g(-1). This synthetic strategy could be easily extended to synthesize other high-performance MXene-supported hybrid electrode materials.
引用
收藏
页码:1485 / 1490
页数:6
相关论文
共 38 条
[1]   Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANO ENERGY, 2017, 34 :249-256
[2]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[3]  
[Anonymous], 2019, ANGEW CHEM, V131, P3559
[4]   Porous MoS2/Carbon Spheres Anchored on 3D Interconnected Multiwall Carbon Nanotube Networks forUltrafast Na Storage [J].
Chen, Biao ;
Lu, Huihui ;
Zhou, Jingwen ;
Ye, Chao ;
Shi, Chunsheng ;
Zhao, Naiqin ;
Qiao, Shi-Zhang .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[5]  
Chen C., 2018, ANGEW CHEM, V57, P1864, DOI DOI 10.1002/ange.201710616
[6]   MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries [J].
Chen, Chi ;
Xie, Xiuqiang ;
Anasori, Babak ;
Sarycheva, Asya ;
Makaryan, Taron ;
Zhao, Mengqiang ;
Urbankowski, Patrick ;
Miao, Ling ;
Jiang, Jianjun ;
Gogotsi, Yury .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) :1846-1850
[7]   Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance [J].
Ghidiu, Michael ;
Lukatskaya, Maria R. ;
Zhao, Meng-Qiang ;
Gogotsi, Yury ;
Barsoum, Michel W. .
NATURE, 2014, 516 (7529) :78-U171
[8]   Trifluoropropylene Carbonate-Driven Interface Regulation Enabling Greatly Enhanced Lithium Storage Durability of Silicon-Based Anodes [J].
Hu, Zhongli ;
Zhao, Liubin ;
Jiang, Tao ;
Liu, Jie ;
Rashid, Arif ;
Sun, Pengfei ;
Wang, Gulian ;
Yan, Chenglin ;
Zhang, Li .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (45)
[9]   Self-Assembled Binary Organic Granules with Multiple Lithium Uptake Mechanisms toward High-Energy Flexible Lithium-Ion Hybrid Supercapacitors [J].
Hu, Zhongli ;
Sayed, Shah ;
Jiang, Tao ;
Zhu, Xingyu ;
Lu, Chen ;
Wang, Gulian ;
Sun, Jingyu ;
Rashid, Arif ;
Yan, Chenglin ;
Zhang, Li ;
Liu, Zhongfan .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[10]   Low-Temperature Reduction Strategy Synthesized Si/Ti3C2 MXene Composite Anodes for High-Performance Li-Ion Batteries [J].
Hui, Xiaobin ;
Zhao, Ruizheng ;
Zhang, Peng ;
Li, Caixia ;
Wang, Chengxiang ;
Yin, Longwei .
ADVANCED ENERGY MATERIALS, 2019, 9 (33)