On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations

被引:16
作者
Antonelli, Paolo [1 ]
Spirito, Stefano [2 ]
机构
[1] GSSI, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, I-67100 Laquila, Italy
关键词
Compressible fluids; quantum Navier-Stokes; vacuum; SPACE DIMENSIONS; FLUID MODELS; EXISTENCE; KORTEWEG; SYSTEM;
D O I
10.1142/S0219891618500054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the quantum Navier-Stokes (QNS) system in three space dimensions. We prove compactness of finite energy weak solutions for large initial data. The main novelties are that vacuum regions are included in the weak formulation and no extra terms, like damping or cold pressure, are considered in the equations in order to define the velocity field. Our argument uses an equivalent formulation of the system in terms of an effective velocity, in order to eliminate the third-order terms in the new system. This will allow to obtain the same compactness properties as for the Navier-Stokes equations with degenerate viscosity.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 23 条
[1]   Global Existence of Finite Energy Weak Solutions of Quantum Navier-Stokes Equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) :1161-1199
[2]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[3]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[4]   On the well-posedness for the Euler-Korteweg model in several space dimensions [J].
Benzoni-Gavage, S. ;
Danchin, R. ;
Descombes, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1499-1579
[5]  
Benzoni-Gavage S., PROPAGATING PHASE BO
[6]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[7]   On viscous shallow-water equations (Saint-Venant model) and the quasi-geostrophic limit [J].
Bresch, D ;
Desjardins, B .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (12) :1079-1084
[8]  
Bresch D., 2015, ARXIV150704629V1
[9]   Derivation of viscous correction terms for the isothermal quantum Euler model [J].
Brull, S. ;
Mehats, F. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (03) :219-230
[10]   CONSERVATIVE DIFFUSIONS [J].
CARLEN, EA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (03) :293-315