Discrete derived categories II: the silting pairs CW complex and the stability manifold

被引:21
作者
Broomhead, Nathan [1 ]
Pauksztello, David [2 ]
Ploog, David [3 ]
机构
[1] Univ Bielefeld, Fac Math, POB 100 131, D-33501 Bielefeld, Germany
[2] Univ Manchester, Sch Math, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] Leibniz Univ Hannover, Inst Algebra Geometrie, Fak Math & Phys, Welfengarten 1, D-30167 Hannover, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2016年 / 93卷
基金
英国工程与自然科学研究理事会;
关键词
CO-T-STRUCTURES; TRIANGULATED CATEGORIES; TILTING MODULES; MUTATION; ALGEBRAS; OBJECTS;
D O I
10.1112/jlms/jdv069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Discrete derived categories were studied initially by Vossieck ['The algebras with discrete derived category', J. Algebra 243 (2001) 168-176] and later by BobiA"ski, Gei and SkowroA"ski ['Classification of discrete derived categories', Cent. Eur. J. Math. 2 (2004) 19-49]. In this article, we define the CW complex of silting pairs for a triangulated category and show that it is contractible in the case of discrete derived categories. We provide an explicit embedding from the silting CW complex into the stability manifold. By work of Qiu and Woolf ['Contractible stability spaces and faithful braid group actions', Preprint, 2014, arXiv:1407.5986], there is a deformation retract of the stability manifold onto the silting pairs CW complex. We obtain that the space of stability conditions of discrete derived categories is contractible.
引用
收藏
页码:273 / 300
页数:28
相关论文
共 33 条
[1]   Tilting-Connected Symmetric Algebras [J].
Aihara, Takuma .
ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (03) :873-894
[2]   Silting mutation in triangulated categories [J].
Aihara, Takuma ;
Iyama, Osamu .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 :633-668
[3]  
[Anonymous], 1982, ANALYSE TOPOLOGIE ES
[4]  
Bj??rner A., 1984, EUROPEAN J COMBIN, V5, P7, DOI [10.1016/S0195-6698(84)80012-8, DOI 10.1016/S0195-6698(84)80012-8]
[5]   ON LEXICOGRAPHICALLY SHELLABLE POSETS [J].
BJORNER, A ;
WACHS, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :323-341
[6]   Classification of discrete derived categories [J].
Bobinski, Grzegorz ;
Geiss, Christof ;
Skowronski, Andrzej .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (01) :19-49
[7]   Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general) [J].
Bondarko, M. V. .
JOURNAL OF K-THEORY, 2010, 6 (03) :387-504
[8]  
Bongartz K., 1980, LECT NOTES MATH, V903, P26
[9]  
Bridgeland T., 2014, PREPRINT
[10]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345