On the Greatest Common Divisor of the Value of Two Polynomials

被引:5
作者
Frenkel, Peter E. [1 ,2 ]
Pelikan, Jozsef [1 ]
机构
[1] Eotvos Unnvets, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Hungarian Acad Sci, Renyi Inst Math, 13-15 Realtanodu Utca, H-1053 Budapest, Hungary
关键词
D O I
10.4169/amer.math.monthly.124.5.446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if two monic polynomials with integer coefficients have a square-free resultant, then all positive divisors of the resultant arise as the greatest common divisor of the values of the two polynomials at a suitable integer.
引用
收藏
页码:446 / 450
页数:5
相关论文
共 6 条
[1]  
Adkins WA., 1992, Algebra. An Approach via Module Theory
[2]   COMMON FACTORS OF RESULTANTS MODULO p [J].
Gomez, Domingo ;
Gutierrez, Jaime ;
Ibeas, Alvar ;
Sevilla, David .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (02) :299-302
[3]   THE STRONG LAW OF SMALL NUMBERS [J].
GUY, RK .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (08) :697-712
[4]  
Janson S., Resultant and discriminant of polynomials
[5]  
Khomovsky D. I., INTEGERS ELECT J COM, V16, pA41
[6]  
Smith H. J. S., PHILOS T R SOC LONDO, V151, P293