Toward Better and Smarter Batteries by Combining AI with Multisensory and Self-Healing Approaches

被引:48
作者
Vegge, Tejs [1 ]
Tarascon, Jean-Marie [2 ,3 ]
Edstrom, Kristina [4 ]
机构
[1] Dept Energy Convers & Storage, Bldg 301, DK-2800 Lyngby, Denmark
[2] Coll France, UMR 8260, Chim Solide Energie, F-75231 Paris, France
[3] Reseau Stockage Electroquim Energie RS2E, F-3459 Paris, France
[4] Angstrom Lab, Dept Chem, Box 538, S-75121 Uppsala, Sweden
关键词
AI; batteries; interfaces; multisensory; self‐ healing; LITHIUM BATTERIES; CELL STATE; SYSTEMS; DESIGN; MODELS; METAL; REPRESENTATION; CYCLODEXTRIN; TEMPERATURE; CHEMISTRY;
D O I
10.1002/aenm.202100362
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With an exponentially growing demand for rechargeable batteries, the development of new ultra-performant, fully scalable, and sustainable battery technologies and materials must be accelerated. Creating a holistic, closed-loop infrastructure for materials discovery, manufacturing, and battery testing that utilizes a common data infrastructure and autonomous workflows to bridge big data from all domains of the battery value chain, can pave the way for a transformative reduction in the required time to discovery. By embedding multisensory and self-healing capabilities in future battery technologies and integrating these with AI and physics-aware machine learning models capable of predicting the spatio-temporal evolution of battery materials and interfaces, it will, in time, be possible to identify, predict and prevent potential degradation and failure modes. This will facilitate enhanced battery quality, reliability, and life, for example, by preemptively changing the battery charging conditions or releasing self-healing additives from the separator membrane, akin to preemptive medicine, and form the basis for inverse design of new battery materials, interfaces, and additives. The large-scale and long-term European research initiative BATTERY 2030+ seeks to make this longer-than ten-year vision a reality through the development of a versatile and chemistry neutral "Battery Interface Genome-Materials Acceleration Platform" infrastructure (BIG-MAP).
引用
收藏
页数:10
相关论文
共 119 条
[1]   Tilted fiber Bragg grating sensors [J].
Albert, Jacques ;
Shao, Li-Yang ;
Caucheteur, Christophe .
LASER & PHOTONICS REVIEWS, 2013, 7 (01) :83-108
[2]  
Aspuru-Guzik Aln., 2018, Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial Intelligence
[3]  
AspuruGuzik A., 2020, ARXIV PREPRINT
[4]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[5]   Network analysis of synthesizable materials discovery [J].
Aykol, Muratahan ;
Hegde, Vinay I. ;
Hung, Linda ;
Suram, Santosh ;
Herring, Patrick ;
Wolverton, Chris ;
Hummelshoj, Jens S. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Monitoring the Strain Evolution of Lithium-Ion Battery Electrodes using an Optical Fiber Bragg Grating Sensor [J].
Bae, Chang-Jun ;
Manandhar, Ashish ;
Kiesel, Peter ;
Raghavan, Ajay .
ENERGY TECHNOLOGY, 2016, 4 (07) :851-855
[7]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[8]   Emerging materials intelligence ecosystems propelled by machine learning [J].
Batra, Rohit ;
Song, Le ;
Ramprasad, Rampi .
NATURE REVIEWS MATERIALS, 2021, 6 (08) :655-678
[9]   Single-sulfur atom discrimination of polysulfides with a protein nanopore for improved batteries [J].
Betermier, Fanny ;
Cressiot, Benjamin ;
Di Muccio, Giovanni ;
Jarroux, Nathalie ;
Bacri, Laurent ;
della Rocca, Blasco Morozzo ;
Chinappi, Mauro ;
Pelta, Juan ;
Tarascon, Jean-Marie .
COMMUNICATIONS MATERIALS, 2020, 1 (01)
[10]   A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter [J].
Bhattacharyya, Swastibrata ;
Sahara, Ryoji ;
Ohno, Kaoru .
NATURE COMMUNICATIONS, 2019, 10 (1)