The initial-boundary value problem for the generalized double dispersion equation

被引:8
作者
Su, Xiao [1 ]
Wang, Shubin [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 03期
关键词
Generalized double dispersion equation; Global existence; Blowup; TIME BLOW-UP; POTENTIAL WELL METHOD; GLOBAL EXISTENCE; CAUCHY-PROBLEM; BOUSSINESQ EQUATION; NONEXISTENCE; INSTABILITY;
D O I
10.1007/s00033-017-0798-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial-boundary value problem for the generalized double dispersion equation in all space dimension. Under the suitable assumptions on the initial data and the parameters in the equation, we establish several results concerning local existence, global existence, uniqueness, and finite time blowup property. The exponential decay rate of the energy is proved for global solutions. The sufficient and necessary conditions of global solutions and finite time blowup of solutions are given, respectively.
引用
收藏
页数:21
相关论文
共 27 条
[1]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[2]   Initial boundary value problem of the generalized cubic double dispersion equation [J].
Chen, GW ;
Wang, YP ;
Wang, SB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) :563-577
[3]   Instability and stability properties of traveling waves for the double dispersion equation [J].
Erbay, H. A. ;
Erbay, S. ;
Erkip, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 :1-14
[4]   Global solutions and finite time blow up for damped semilinear wave equations [J].
Gazzola, F ;
Squassina, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :185-207
[5]  
Gazzola F, 2005, DIFFER INTEGRAL EQU, V18, P961
[6]  
Komornik V, 1994, EXACT CONTROL LABILI
[7]   Global existence to generalized Boussinesq equation with combined power-type nonlinearities [J].
Kutev, N. ;
Kolkovska, N. ;
Dimova, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) :427-444
[8]   Global existence of Cauchy problem for Boussinesq paradigm equation [J].
Kutev, N. ;
Kolkovska, N. ;
Dimova, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (03) :500-511
[9]   FINITE TIME BLOW UP OF THE SOLUTIONS TO BOUSSINESQ EQUATION WITH LINEAR RESTORING FORCE AND ARBITRARY POSITIVE ENERGY [J].
Kutev, Nikolay ;
Kolkovska, Natalia ;
Dimova, Milena .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) :881-890
[10]   INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS OF FORM PUTT = -AU + F(U) [J].
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :1-21