Subcell Development for Wafer-Bonded III-V//Si Tandem Solar Cells

被引:0
作者
Schygulla, Patrick [1 ]
Heinz, Friedemann [1 ]
Lackner, David [1 ]
Dimroth, Frank [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, Freiburg, Germany
来源
2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2020年
关键词
multijunction solar cells; MOVPE; GaInAsP; AlGaAs; III-V//Si; EFFICIENCY; LIMIT;
D O I
10.1109/pvsc45281.2020.9300801
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work focuses on the material properties of two III-V semiconductors, AlGaAs and GaInAsP, and their usage as middle cell absorber materials in a wafer-bonded III-V//Si triple-junction solar cell. To this end single-junction solar cells were grown epitaxially lattice matched on GaAs wafers using metalorganic chemical vapor phase epitaxy (MOVPE). By optimizing the growth temperature and the V/III ratio we could increase the open-circuit voltage at a target absorber bandgap of 1.50 eV by up to 100 mV. In the future these results will be implemented into two-terminal III-V//Si triple-junction solar cells to increase the conversion efficiency beyond the current record of 34.1 % under the AM1.5g solar spectrum.
引用
收藏
页码:2716 / 2719
页数:4
相关论文
共 17 条
  • [1] Ahrenkiel R. K, 1993, PROPERTIES ALUMINIUM, V7, P221
  • [2] Cuevas A., 16 EUR PHOT SOL EN C
  • [3] Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions
    Essig, Stephanie
    Allebe, Christophe
    Remo, Timothy
    Geisz, John F.
    Steiner, Myles A.
    Horowitz, Kelsey
    Barraud, Loris
    Ward, J. Scott
    Schnabel, Manuel
    Descoeudres, Antoine
    Young, David L.
    Woodhouse, Michael
    Despeisse, Matthieu
    Ballif, Christophe
    Tamboli, Adele
    [J]. NATURE ENERGY, 2017, 2 (09):
  • [4] Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells
    Geisz, J. F.
    Steiner, M. A.
    Garcia, I.
    Kurtz, S. R.
    Friedman, D. J.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (04)
  • [5] Solar cell efficiency tables (Version 53)
    Green, Martin A.
    Hishikawa, Yoshihiro
    Dunlop, Ewan D.
    Levi, Dean H.
    Hohl-Ebinger, Jochen
    Yoshita, Masahiro
    Ho-Baillie, Anita W. Y.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2019, 27 (01): : 3 - 12
  • [6] Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly efficient GaAs-based solar cells
    Hwang, Sun-Tae
    Kim, Soohyun
    Cheun, Hyeunseok
    Lee, Hyun
    Lee, Byungho
    Hwang, Taehyun
    Lee, Sangheon
    Yoon, Wonki
    Lee, Heon-Min
    Park, Byungwoo
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 : 264 - 272
  • [7] Jain N, 2016, IEEE PHOT SPEC CONF, P46, DOI 10.1109/PVSC.2016.7749406
  • [8] Characterization of oxygen and carbon in undoped AlGaAs grown by organometallic vapor-phase epitaxy
    Kakinuma, H
    Mohri, M
    Akiyama, M
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1997, 36 (1A): : 23 - 28
  • [9] First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors
    Kirk, Alexander P.
    Kirk, Wiley P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (17)
  • [10] Two-Terminal Direct Wafer-Bonded GaInP/AlGaAs//Si Triple-Junction Solar Cell with AM1.5g Efficiency of 34.1%
    Lackner, David
    Hoehn, Oliver
    Mueller, Ralph
    Beutel, Paul
    Schygulla, Patrick
    Hauser, Hubert
    Predan, Felix
    Siefer, Gerald
    Schachtner, Michael
    Schoen, Jonas
    Benick, Jan
    Hermle, Martin
    Dimroth, Frank
    [J]. SOLAR RRL, 2020, 4 (09)