Mechanical behavior of core-shell nanostructures

被引:9
|
作者
Santhapuram, Raghuram R. [1 ]
Spearot, Douglas E. [2 ]
Nair, Arun K. [1 ,3 ]
机构
[1] Univ Arkansas, Dept Mech Engn, Multiscale Mat Modeling Lab, 863 W Dickson St,204 Mech Engn Bldg, Fayetteville, AR 72701 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
[3] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
NANOINDENTATION; DEFORMATION; MEMS;
D O I
10.1007/s10853-019-04263-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanotexturing reduces the effective contact between surfaces in relative motion, which can result in a lower coefficient of friction. However, nanotextured surfaces lack structural integrity, resulting in permanent deformation even at moderate contact forces. Therefore, core-shell nanostructures (CSNs) have been developed to protect the structural integrity of nanotextured surfaces. These CSNs can withstand higher contact forces, might include some plastic deformation (dislocations), but during unloading there is no evidence of residual plastic deformation. Therefore, the CSN is deformation resistant. In the current study, molecular dynamics simulations are used to study the effect of core (aluminum) radius, shell (amorphous silicon) thickness, and the random atomic distribution in the amorphous shell, on mechanical properties of core-shell nanostructures. The results suggest that core radius does not have a significant influence on the initial plastic deformation of the CSN. The shell thickness should be chosen so that the core to shell ratio is less than two to have deformation resistant CSNs. Further we observe that with an increase in core radii or shell thickness, the ability of a CSN to fully recover decreases. These results will help in the design of deformation resistant surfaces for MEMS/NEMS applications.
引用
收藏
页码:4303 / 4310
页数:8
相关论文
共 50 条
  • [11] Plasmonic Core-Shell Nanostructures Enhanced Spectroscopies
    Zhou, Jun
    Wei, Di-Ye
    Zhang, Yu-Jin
    Zhang, Hua
    Li, Jian-Feng
    CHINESE JOURNAL OF CHEMISTRY, 2022, 40 (03): : 392 - 406
  • [12] Metallic core-shell nanostructures for photoelectrochemical cells
    Sheehan, Stafford W.
    Noh, Heeso
    Brudvig, Gary W.
    Cao, Hui
    Schmuttenmaer, Charles A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [13] Mechanical characterization of core-shell microcapsules
    Xie, Kaili
    Leonetti, Marc
    COMPTES RENDUS MECANIQUE, 2023, 351 : 163 - 182
  • [14] Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures
    Fleming, Robert A.
    Goss, Josue A.
    Zou, Min
    APPLIED SURFACE SCIENCE, 2017, 412 : 96 - 104
  • [15] Fabrication and Optical Behaviors of Core-Shell ZnS Nanostructures
    Yang, Zai-Xing
    Zhong, Wei
    Deng, Yu
    Au, Chaktong
    Du, You-Wei
    NANOSCALE RESEARCH LETTERS, 2010, 5 (07): : 1124 - 1127
  • [16] Defect-mediated ripening of core-shell nanostructures
    Qiubo Zhang
    Xinxing Peng
    Yifan Nie
    Qi Zheng
    Junyi Shangguan
    Chao Zhu
    Karen C. Bustillo
    Peter Ercius
    Linwang Wang
    David T. Limmer
    Haimei Zheng
    Nature Communications, 13
  • [17] Alcohol oxidation electrocatalysis on CuPt core-shell nanostructures
    Co, Anne
    Coleman, Eric
    Choi, Heewon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [18] Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures
    Mezeme, M. Essone
    Lasquellec, S.
    Brosseau, C.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)
  • [19] Versatile route to core-shell reinforced network nanostructures
    Rusch, Pascal
    Niemeyer, Fabian
    Pluta, Denis
    Schremmer, Bjoern
    Luebkemann, Franziska
    Rosebrock, Marina
    Schaefer, Malte
    Jahns, Mandy
    Behrens, Peter
    Bigall, Nadja C.
    NANOSCALE, 2019, 11 (32) : 15270 - 15278
  • [20] Editorial: Core-Shell Nanostructures for Energy Storage and Conversion
    Sun, Zhipeng
    Wang, Ruiying
    NANOMATERIALS, 2023, 13 (03)