Almost symplectic Runge-Kutta schemes for Hamiltonian systems

被引:10
|
作者
Tan, XB [1 ]
机构
[1] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
关键词
geometric integrators; Hamiltonian structure; symplectic Runge-Kutta methods; pseudo-symplecticity; fixed-point iteration; Newton's method; convergence;
D O I
10.1016/j.jcp.2004.08.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Symplectic Runge-Kutta schemes for the integration of general Hamiltonian systems are implicit. In practice, one has to solve the implicit algebraic equations using some iterative approximation method, in which case the resulting integration scheme is no longer symplectic. In this paper, the preservation of the symplectic structure is analyzed under two popular approximation schemes, fixed-point iteration and Newton's method, respectively. Error bounds for the symplectic structure are established when N fixed-point iterations or N iterations of Newton's method are used. The implications of these results for the implementation of symplectic methods are discussed and then explored through numerical examples. Numerical comparisons with non-symplectic Runge-Kutta methods and pseudo-symplectic methods are also presented. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:250 / 273
页数:24
相关论文
共 50 条
  • [31] Efficient implementation of symplectic implicit Runge-Kutta schemes with simplified Newton iterations
    Mikel Antoñana
    Joseba Makazaga
    Ander Murua
    Numerical Algorithms, 2018, 78 : 63 - 86
  • [32] Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods
    Blanes, S
    Moan, PC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 313 - 330
  • [33] SYMPLECTIC RUNGE-KUTTA METHODS WITH REAL EIGENVALUES
    HAIRER, E
    WANNER, G
    BIT, 1994, 34 (02): : 310 - 312
  • [34] Acceleration of Runge-Kutta integration schemes
    Phohomsiri, P
    Udwadia, FE
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2004, 2004 (02) : 307 - 314
  • [35] Symplectic properties of multistep Runge-Kutta methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (10-11) : 1329 - 1338
  • [36] A new implementation of symplectic Runge-Kutta methods
    Mclachlan, Robert I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (04): : 1637 - 1649
  • [37] Numerical smoothing of Runge-Kutta schemes
    Sun, Tong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) : 1056 - 1062
  • [38] A class of symplectic partitioned Runge-Kutta methods
    Gan, Siqing
    Shang, Zaijiu
    Sun, Geng
    APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 968 - 973
  • [39] Pseudo-symplectic Runge-Kutta methods
    A. Aubry
    P. Chartier
    BIT Numerical Mathematics, 1998, 38 : 439 - 461
  • [40] Starting algorithms for Gauss Runge-Kutta methods for Hamiltonian systems
    Calvo, M
    Laburta, MP
    Montijano, JI
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 401 - 410