Homogenization of a parabolic operator with Signorini boundary conditions in perforated domains

被引:0
作者
Beliaev, A [1 ]
机构
[1] Russian Acad Sci, Inst Water Problems, Moscow 103064, Russia
关键词
perforated domains; parabolic equations; nonlinear semigroups; homogenization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with homogenization of initial value problems for the standard parabolic equation in a periodically or randomly perforated domain. The boundary of the domain is assumed to be semi-permeable, and this implies Signorini boundary conditions for the sought variable. Convergence of solutions to the solution of the homogenized problem is proved under the minimal number of assumptions with respect to regularity of initial data and geometry of the boundaries.
引用
收藏
页码:255 / 268
页数:14
相关论文
共 15 条
[1]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[2]  
Beliaev A, 1999, ASYMPTOTIC ANAL, V19, P81
[3]  
BELIAEV A, 1999, POROUS MEDIA PHYS MO, P279
[4]  
BOURGEAT A, 1994, J REINE ANGEW MATH, V456, P19
[5]  
Brezis H., 1972, Journal of Functional Analysis, V9, P63, DOI 10.1016/0022-1236(72)90014-6
[6]   GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES [J].
CRANDALL, MG ;
LIGGETT, TM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (02) :265-&
[7]  
Duvaut G., 1972, INEQUATIONS MECANIQU
[8]  
HORNUNG U, 1994, RAIRO-MATH MODEL NUM, V28, P59
[10]  
Jikov V. V., 1994, Homogenization of differential operators and integral functionals, DOI 10.1007/978-3-642-84659-5