GRADIENT ESTIMATES FOR A NONLINEAR PARABOLIC EQUATION WITH DIRICHLET BOUNDARY CONDITION

被引:0
作者
Fu, Xuenan [1 ]
Wu, Jia-Yong [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Smooth metric measure space; Bakry-Emery Ricci curvature; manifold with boundary; gradient estimate; Liouville theorem; METRIC-MEASURE-SPACES; RICCI CURVATURE; EIGENVALUE ESTIMATE; HEAT-EQUATION; MANIFOLDS; RIGIDITY; KERNEL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove Souplet-Zhang type gradient estimates for a nonlinear parabolic equation on smooth metric measure spaces with the compact boundary under the Dirichlet boundary condition when the Bakry-Emery Ricci tensor and the weighted mean curvature are both bounded below. As an application, we obtain a new Liouville type result for some space-time functions on such smooth metric measure spaces. These results generalize previous linear equations to a nonlinear case.
引用
收藏
页码:96 / 109
页数:14
相关论文
共 32 条
[1]  
[Anonymous], 2002, arXiv
[2]  
Bakry D., 1985, Lecture Notes in Math., V1123, P177
[3]  
Cao H-D, 2010, Adv. Lect. Math. (ALM), V11, P1
[4]  
CHEN R, 1990, P AM MATH SOC, V108, P961
[5]   EIGENVALUE ESTIMATE AND COMPACTNESS FOR CLOSED f-MINIMAL SURFACES [J].
Cheng, Xu ;
Mejia, Tito ;
Zhou, Detang .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (02) :347-367
[6]   SHARP GRADIENT ESTIMATES ON WEIGHTED MANIFOLDS WITH COMPACT BOUNDARY [J].
Dung, Ha tuan ;
Dung, Nguyen thac ;
Wu, Jiayong .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (12) :4127-4138
[7]   Gradient estimates for weighted harmonic function with Dirichlet boundary condition [J].
Dung, Nguyen Thac ;
Wu, Jia-Yong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 213
[8]   SHARP GRADIENT ESTIMATES FOR A HEAT EQUATION IN RIEMANNIAN MANIFOLDS [J].
Ha Tuan Dung ;
Nguyen Thac Dung .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) :5329-5338
[9]  
HAMILTON RS, 1993, J DIFFER GEOM, V38, P1
[10]  
Kunikawa K., ARXIV201209374