Object Classification in Radar Using Ensemble Methods

被引:0
作者
Lombacher, Jakob [1 ]
Hahn, Markus [1 ]
Dickmann, Jurgen [1 ]
Woehler, Christian [2 ]
机构
[1] Daimler AG, Wilhelm Runge Str 11, D-89081 Ulm, Germany
[2] Tech Univ Dortmund, Image Anal Grp, Otto Hahn Str 4, D-44227 Dortmund, Germany
来源
2017 IEEE MTT-S INTERNATIONAL CONFERENCE ON MICROWAVES FOR INTELLIGENT MOBILITY (ICMIM) | 2017年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To enable autonomous driving, a semantic knowledge of the environment is unavoidable. We therefore introduce a multiclass classifier to determine the classes of an object relying solely on radar data. This is a challenging problem as objects of the same category have often a diverse appearance in radar data. As classification methods a random forest classifier and a deep convolutional neural network are evaluated. To get good results despite the limited training data available, we introduce a hybrid approach using an ensemble consisting of the two classifiers. Further we show that the accuracy can be improved significantly by allowing a lower detection rate.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 14 条
  • [1] Convolutional Neural Networks for Speech Recognition
    Abdel-Hamid, Ossama
    Mohamed, Abdel-Rahman
    Jiang, Hui
    Deng, Li
    Penn, Gerald
    Yu, Dong
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (10) : 1533 - 1545
  • [2] [Anonymous], INT TRANSP SYST ITSC
  • [3] [Anonymous], 2012, P C NEUR INF PROC SY
  • [4] [Anonymous], IEEE MIT S INT C MIC
  • [5] [Anonymous], 1963, Automation and Remote Control
  • [6] [Anonymous], INTELLIGENT ROBOTS S
  • [7] Breiman L., 2001, Random Forests, DOI DOI 10.1023/A:1010933404324.PDF
  • [8] Dubé R, 2014, IEEE INT VEH SYM, P1415, DOI 10.1109/IVS.2014.6856568
  • [9] Lombacher J, 2015, INT RADAR SYMP PROC, P180, DOI 10.1109/IRS.2015.7226281
  • [10] McCulloch WS, 2016, EMBODIMENTS OF MIND, P19