Induced cycle structure and outerplanarity

被引:4
|
作者
McKee, TA [1 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
关键词
cycle basis; induced cycle basis; minimum cycle basis; intersection graphs; outerplanar graphs;
D O I
10.1016/S0012-365X(00)00103-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Those nonseparable graphs whose induced cycles form a (necessarily minimum length) cycle basis are characterized in several ways - each a generalization of outerplanar graphs. For instance, they are the series-parallel graphs that do not contain a subdivision of K-2,K-3 as an induced subgraph - whereas the outerplanar graphs are known to be the series-parallel graphs that do not contain a subdivision of K2,3 as a subgraph. The approach uses a certain 'tree structure' such that the outerplanar graphs are those for which that tree structure is unique. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 46 条
  • [1] On finding cycle bases and fundamental cycle bases with a shortest maximal cycle
    Galbiati, G
    INFORMATION PROCESSING LETTERS, 2003, 88 (04) : 155 - 159
  • [2] Cycle bases to the rescue
    Tobias, Roland
    Furtenbacher, Tibor
    Csaszar, Attila G.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 : 557 - 564
  • [3] Convex cycle bases
    Hellmuth, Marc
    Leydold, Josef
    Stadler, Peter F.
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (01) : 123 - 140
  • [4] Maximizing Minimum Cycle Bases Intersection
    Aboulfath, Ylene
    Wate, Dimitri
    Weisser, Marc-Antoine
    Mautor, Thierry
    Barth, Dominique
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 55 - 68
  • [5] Minimum cycle bases of Halin graphs
    Stadler, PF
    JOURNAL OF GRAPH THEORY, 2003, 43 (02) : 150 - 155
  • [6] Minimum Cycle Bases for Network Graphs
    Franziska Berger
    Peter Gritzmann
    Sven de Vries
    Algorithmica , 2004, 40 : 51 - 62
  • [7] Minimum cycle bases for network graphs
    Berger, F
    Gritzmann, P
    de Vries, S
    ALGORITHMICA, 2004, 40 (01) : 51 - 62
  • [8] Minimum Cycle Bases: Faster and Simpler
    Mehlhorn, Kurt
    Michail, Dimitrios
    ACM TRANSACTIONS ON ALGORITHMS, 2009, 6 (01)
  • [9] Minimum cycle bases of lexicographic products
    Hellmuth, Marc
    Ostermeier, Philipp-Jens
    Stadler, Peter F.
    ARS MATHEMATICA CONTEMPORANEA, 2012, 5 (02) : 223 - 234
  • [10] Cycle bases of graphs and sampled manifolds
    Gotsman, Craig
    Kaligosi, Kanela
    Mehlhorn, Kurt
    Michail, Dimitrios
    Pyrga, Evangelia
    COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (8-9) : 464 - 480