Integral p-adic Hodge theory of formal schemes in low ramification

被引:3
作者
Min, Yu [1 ]
机构
[1] Inst Math Jussieu Paris Rive Gauche, Campus Pierre & Marie Curie Jussieu, Paris, France
关键词
integral p-adic Hodge theory; prismatic cohomology; REPRESENTATIONS; COHOMOLOGY; TORSION;
D O I
10.2140/ant.2021.15.1043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any proper smooth formal scheme X over O-K, where O-K is the ring of integers in a complete discretely valued nonarchimedean extension K of Q(p) with perfect residue field k and ramification degree e, the i-th Breuil-Kisin cohomology group and its Hodge-Tate specialization admit nice decompositions when ie < p - 1. Thanks to the comparison theorems in the recent works of Bhatt, Morrow and Scholze (2018, 2019), we can then get an integral comparison theorem for formal schemes when the cohomological degree i satisfies ie < p - 1, which generalizes the case of schemes under the condition (i + 1)e < p - 1 proven by Fontaine and Messing (1987) and Caruso (2008).
引用
收藏
页码:1043 / 1076
页数:34
相关论文
共 28 条
  • [1] [Anonymous], 2000, GRAD TEXT M
  • [2] Berthelot P., 1974, Lecture Notes in Mathematics, V407
  • [3] Bhatt B., 2019, PREPRINT
  • [4] Bhatt B, 2019, PUBL MATH-PARIS, V129, P199, DOI 10.1007/s10240-019-00106-9
  • [5] Bhatt B, 2018, PUBL MATH-PARIS, V128, P219, DOI 10.1007/s10240-019-00102-z
  • [6] Specializing varieties and their cohomology from characteristic 0 to characteristic p
    Bhatt, Bhargav
    [J]. ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 43 - 88
  • [7] Construction of p-adic semi-stable representations
    Breuil, C
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (03): : 281 - 327
  • [8] p-torsion cohomology and crystalline cohomology in semi-stable reduction
    Breuil, C
    [J]. DUKE MATHEMATICAL JOURNAL, 1998, 95 (03) : 523 - 620
  • [9] Breuil Christophe., 1998, PREPRINT
  • [10] Cais B., 2019, MATH SURV MONOGR, V242