Closed subspaces and some basic topological properties of noncommutative Orlicz spaces

被引:2
作者
Jiang, Lining [1 ]
Ma, Zhenhua [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Hebei Univ Architecture, Dept Math & Phys, Zhangjiakou 075024, Peoples R China
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2017年 / 127卷 / 03期
基金
美国国家科学基金会;
关键词
Noncommutative Orlicz spaces; tau-measurable operator; von Neumann algebra; Orlicz function;
D O I
10.1007/s12044-017-0334-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the noncommutative Orlicz space L-phi((M) over tilde, tau), which generalizes the concept of noncommutative L-p space, where M is a von Neumann algebra, and phi is an Orlicz function. As a modular space, the space L-phi((M) over tilde, tau) possesses the Fatou property, and consequently, it is a Banach space. In addition, a new description of the subspace in E-phi((M) over tilde, tau) = <(M boolean AND L-phi(<(M)over tilde>, tau)$)over bar> in L-phi((M) over tilde, tau), which is closed under the norm topology and dense under the measure topology, is given. Moreover, if the Orlicz function phi satisfies the Delta(2)-condition, then L-phi((M) over tilde, tau) is uniformly monotone, and convergence in the norm topology and measure topology coincide on the unit sphere. Hence, if E-phi((M) over tilde, tau) = L-phi((M) over tilde, tau) if phi satisfies the Delta(2)-condition.
引用
收藏
页码:525 / 536
页数:12
相关论文
共 19 条
  • [1] Noncommutative Orlicz spaces associated to a state
    Al-Rashed, Maryam H. A.
    Zegarlinski, Boguslaw
    [J]. STUDIA MATHEMATICA, 2007, 180 (03) : 199 - 209
  • [2] Noncommutative Orlicz spaces associated to a state II
    Al-Rashed, Maryam H. A.
    Zegarlinski, Boguslaw
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (12) : 2999 - 3013
  • [3] [Anonymous], 1996, THESIS
  • [4] Bennet G., 1988, INTERPOLATION OPERAT
  • [5] NON-COMMUTATIVE BANACH FUNCTION-SPACES
    DODDS, PG
    DODDS, TKY
    DEPAGTER, B
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (04) : 583 - 597
  • [6] NONCOMMUTATIVE KOTHE DUALITY
    DODDS, PG
    DODDS, TKY
    DEPAGTER, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) : 717 - 750
  • [7] GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS
    FACK, T
    KOSAKI, H
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) : 269 - 300
  • [8] Ghadir Sadeghi., 2012, J MATH ANAL APPL, V395, P705, DOI [10.1016/j.jmaa.2012.05.054, DOI 10.1016/J.JMAA.2012.05.054]
  • [9] Haagerup U, 2003, MEM AM MATH SOC, V163, pIII
  • [10] NONCOMMUTATIVE ORLICZ SPACES AND GENERALIZED ARENS ALGEBRAS
    KUNZE, W
    [J]. MATHEMATISCHE NACHRICHTEN, 1990, 147 : 123 - 138