CNN-BD: An Approach for Disease Classification and Visualization

被引:1
作者
Rao, G. Madhukar [1 ]
Kumar, T. Ravi [2 ]
Reddy, A. Rajashekar [3 ]
机构
[1] Sanjivani Coll Engn, Dept Comp Engn, Kopargaon, Maharashtra, India
[2] Sanjivani Coll Engn, Dept Informat Technol, Kopargaon, Maharashtra, India
[3] BVRIT, Dept Informat Technol, Hyderabad, Telangana, India
来源
ADVANCES IN DATA SCIENCE AND MANAGEMENT | 2020年 / 37卷
关键词
Big data; Convolutional neural network; PSO; PCA; Machine learning;
D O I
10.1007/978-981-15-0978-0_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Data visualization is one of the complex parts of the discovery process in the current phase of big data. Finding the hidden level data of big data is that the principal goal of the classifier. The size of the data, number of classes, and the feature space had an effect on the performance of the classifiers. The new analysis of algorithms is needed for improving the accuracy, efficiency, and reliability of the classifiers. This paper proposes a Deep Learning based Convolution Neural Network classifier to classify and visualize the disease data. PCA and PSO methods are used formultivariate data analysis to handlemassive data and feature selection. To demonstrate the proposed learning algorithm, real-world datasets are used. The comparative study shows that deep learning classifier performs better than other classifiers and scientifically higher.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 9 条
  • [1] Farrelly C.M, DIMENSIONALITY REDUC
  • [2] Jan B., 2017, COMPUTE ELECT ENG
  • [3] Kim Yoon, 2014, Encyclopediaof Microfluidics and Nanofluidics, P1746, DOI DOI 10.3115/V1/D14-1181
  • [4] Ramesh D, 2016, IJCTA, V9, P3811
  • [5] Razavi S, 2016, 2016 5 INT C AGROGEO
  • [6] A Novel Feature Selection Algorithm using Particle Swarm Optimization for Cancer Microarray Data
    Sahu, Barnali
    Mishra, Debahuti
    [J]. INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 27 - 31
  • [7] Vasan K.K., 2016, Perspect. Sci, V8, P510, DOI [10.1016/j.pisc.2016.05.010, DOI 10.1016/J.PISC.2016.05.010]
  • [8] Traffic big data prediction and visualization using Fast Incremental Model Trees-Drift Detection (FIMT-DD)
    Wibisono, Ari
    Jatmiko, Wisnu
    Wisesa, Hanief Arief
    Hardjono, Benny
    Mursanto, Petrus
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 93 : 33 - 46
  • [9] Xue B., IEEE T CYBERN