Ultrasmall Mode Volume Hyperbolic Nanocavities for Enhanced Light-Matter Interaction at the Nanoscale

被引:47
作者
Indukuri, S. R. K. Chaitanya [1 ,2 ]
Bar-David, Jonathan [1 ,2 ]
Mazurski, Noa [1 ,2 ]
Levy, Uriel [1 ,2 ]
机构
[1] Hebrew Univ Jerusalem, Fac Sci, Dept Appl Phys, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel
关键词
hyperbolic nanocavities; quantum dots; Purcell factor; light-matter interaction; far-field radiation enhancement; nanoscale cavity quantum electrodynamics; SINGLE QUANTUM-DOT; SPONTANEOUS EMISSION; PLASMON POLARITONS; ROOM-TEMPERATURE; CAVITY; METAMATERIALS; MICROCAVITY;
D O I
10.1021/acsnano.9b05730
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cavities are the building blocks for multiple photonic applications from linear to nonlinear optics and from classical optics to quantum electrodynamics. Hyperbolic metamaterial cavities are one class of optical cavities that have recently been realized and shown to possess desirable characteristics such as engineered refractive indices and ultrasmall mode volumes, both beneficial for enhancement of light-matter interactions at the nanoscale. We hereby report the design, fabrication, and experimental characterization of nanoscale hyperbolic metamaterial cavities at the visible frequency. We show experimentally that these nanocavities enhance the light-matter interaction at the nanoscale and demonstrate increased photonic density of states and enhanced free space radiation efficiency of quantum dots coupled to such cavities, thus demonstrating the importance of hyperbolic metamaterial cavities for applications in solid-state light sources, quantum technologies, and cavity quantum electrodynamics.
引用
收藏
页码:11770 / 11780
页数:11
相关论文
共 71 条
  • [1] High-Q photonic nanocavity in a two-dimensional photonic crystal
    Akahane, Y
    Asano, T
    Song, BS
    Noda, S
    [J]. NATURE, 2003, 425 (6961) : 944 - 947
  • [2] Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
  • [3] Anger Pascal, 2006, Phys Rev Lett, V96, P113002
  • [4] Ultra-high-Q toroid microcavity on a chip
    Armani, DK
    Kippenberg, TJ
    Spillane, SM
    Vahala, KJ
    [J]. NATURE, 2003, 421 (6926) : 925 - 928
  • [5] Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing
    Arora, Pankaj
    Talker, Eliran
    Mazurski, Noa
    Levy, Uriel
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [6] Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission
    Artemyev, MV
    Woggon, U
    Wannemacher, R
    Jaschinski, H
    Langbein, W
    [J]. NANO LETTERS, 2001, 1 (06) : 309 - 314
  • [7] In Situ Planarization of Huygens Metasurfaces by Nanoscale Local Oxidation of Silicon
    Bar-David, Jonathan
    Mazurski, Noa
    Levy, Uriel
    [J]. ACS PHOTONICS, 2017, 4 (09): : 2359 - 2366
  • [8] Low-Temperature Plasmonics of Metallic Nanostructures
    Bouillard, Jean-Sebastien G.
    Dickson, Wayne
    O'Connor, Daniel P.
    Wurtz, Gregory A.
    Zayats, Anatoly V.
    [J]. NANO LETTERS, 2012, 12 (03) : 1561 - 1565
  • [9] Celebrano M, 2015, NAT NANOTECHNOL, V10, P412, DOI [10.1038/nnano.2015.69, 10.1038/NNANO.2015.69]
  • [10] Single-molecule strong coupling at room temperature in plasmonic nanocavities
    Chikkaraddy, Rohit
    de Nijs, Bart
    Benz, Felix
    Barrow, Steven J.
    Scherman, Oren A.
    Rosta, Edina
    Demetriadou, Angela
    Fox, Peter
    Hess, Ortwin
    Baumberg, Jeremy J.
    [J]. NATURE, 2016, 535 (7610) : 127 - 130