Chebyshev Polynomials on a System of Continua

被引:11
作者
Andrievskii, Vladimir V. [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Chebyshev polynomial; Equilibrium measure; Quasismooth curve; FABER POLYNOMIALS;
D O I
10.1007/s00365-015-9280-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The estimates of the uniform norm of the Chebyshev polynomial associated with a compact set consisting of a finite number of continua in the complex plane are established. These estimates are exact (up to a constant factor) in the case where the components of are either quasismooth (in the sense of Lavrentiev) arcs or closed Jordan domains bounded by a quasismooth curve.
引用
收藏
页码:217 / 229
页数:13
相关论文
共 23 条
[1]  
Abdullaev F.G., 1986, THESIS DONETSK
[2]  
Ahlfors L., 1966, Lectures on quasiconformal mappings
[3]   Weighted L p Bernstein-type inequalities on a quasismooth curve in the complex plane [J].
Andrievskii, V. V. .
ACTA MATHEMATICA HUNGARICA, 2012, 135 (1-2) :8-23
[4]  
Andrievskii V V., 1995, Conformal Invariants in Constructive Theory of Functions of Complex Variable
[5]   CONSTRUCTIVE DESCRIPTION OF CERTAIN CLASSES OF FUNCTIONS ON QUASISMOOTH ARCS [J].
ANDRIEVSKII, VV ;
MAIMESKUL, VV .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1995, 44 (01) :193-206
[6]  
[Anonymous], 1973, QUASICONFORMAL MAPPI, DOI DOI 10.1007/978-3-642-65513-5
[7]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[8]  
[Anonymous], 2002, SPRINGER MG MATH
[9]  
[Anonymous], 1997, Logarithmic Potentials with External Fields
[10]   ON SCHLICHT FUNCTIONS [J].
CLUNIE, J .
ANNALS OF MATHEMATICS, 1959, 69 (03) :511-519