A medical image-based graphical platform-Features, applications and relevance for brachytherapy

被引:14
作者
Fonseca, Gabriel P. [1 ,2 ]
Reniers, Brigitte [2 ,3 ]
Landry, Guillaume [2 ,4 ]
White, Shane [2 ]
Bellezzo, Murillo [1 ]
Antunes, Paula C. G. [1 ]
de Sales, Camila P. [5 ]
Welteman, Eduardo [6 ]
Yoriyaz, Helio [1 ]
Verhaegen, Frank [2 ,7 ]
机构
[1] Inst Pesquisas Energet & Nucl IPEN, CNEN SP, Ctr Engn Nucl, Sao Paulo, Brazil
[2] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, NL-6201 BN Maastricht, Netherlands
[3] Hasselt Univ, Ctr Environm Sci, Res Grp NuTeC, Diepenbeek, Belgium
[4] Univ Munich, Dept Med Phys, Garching, Germany
[5] Univ Sao Paulo, Inst Radiol, Hosp Clin, HC FMUSP, Sao Paulo, Brazil
[6] Univ Sao Paulo, Fac Med, HC FMUSP, Sao Paulo, Brazil
[7] McGill Univ, Dept Oncol, Med Phys Unit, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
Brachytherapy; Monte Carlo; Model-based dose calculation algorithms; User interface; MONTE-CARLO; DOSIMETRY PARAMETERS; DOSE CALCULATIONS; IR-192; RECOMMENDATIONS; SOLVER; WATER;
D O I
10.1016/j.brachy.2014.07.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSE: Brachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations. METHODS AND MATERIALS: The A Medical Image-based Graphical platfOrm Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate Ir-192 source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities. RESULTS: The TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver. CONCLUSION: The AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface. (C) 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:632 / 639
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 1975, REPORT TASK GROUP RE, pxix
[2]   Nuclear Data Sheets for A=192 [J].
Baglin, Coral M. .
NUCLEAR DATA SHEETS, 2012, 113 (8-9) :1871-2111
[3]   Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation [J].
Beaulieu, Luc ;
Tedgren, Asa Carlsson ;
Carrier, Jean-Francois ;
Davis, Stephen D. ;
Mourtada, Firas ;
Rivard, Mark J. ;
Thomson, Rowan M. ;
Verhaegen, Frank ;
Wareing, Todd A. ;
Williamson, Jeffrey F. .
MEDICAL PHYSICS, 2012, 39 (10) :6208-6236
[4]  
Berger M J., 1999, XCOM: photon cross sections database
[5]   Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source [J].
Daskalov, GM ;
Loffler, E ;
Williamson, JF .
MEDICAL PHYSICS, 1998, 25 (11) :2200-2208
[6]   Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media [J].
Fogliata, Antonella ;
Nicolini, Giorgia ;
Clivio, Alessandro ;
Vanetti, Eugenio ;
Cozzi, Luca .
RADIATION ONCOLOGY, 2011, 6
[7]   The contribution from transit dose for 192Ir HDR brachytherapy treatments [J].
Fonseca, G. P. ;
Landry, G. ;
Reniers, B. ;
Hoffmann, A. ;
Rubo, R. A. ;
Antunes, P. C. G. ;
Yoriyaz, H. ;
Verhaegen, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (07) :1831-1844
[8]   INITIAL MCNP6 RELEASE OVERVIEW [J].
Goorley, T. ;
James, M. ;
Booth, T. ;
Brown, F. ;
Bull, J. ;
Cox, L. J. ;
Durkee, J. ;
Elson, J. ;
Fensin, M. ;
Forster, R. A. ;
Hendricks, J. ;
Hughes, H. G. ;
Johns, R. ;
Kiedrowski, B. ;
Martz, R. ;
Mashnik, S. ;
McKinney, G. ;
Pelowitz, D. ;
Prael, R. ;
Sweezy, J. ;
Waters, L. ;
Wilcox, T. ;
Zukaitis, T. .
NUCLEAR TECHNOLOGY, 2012, 180 (03) :298-315
[9]  
Goorley T, 2004, LAUR043400 LOS AL NA
[10]   A Study on the Dose Distributions in Various Materials from an Ir-192 HDR Brachytherapy Source [J].
Hsu, Shih-Ming ;
Wu, Chin-Hui ;
Lee, Jeng-Hung ;
Hsieh, Ya-Ju ;
Yu, Chun-Yen ;
Liao, Yi-Jen ;
Kuo, Li-Cheng ;
Liang, Ji-An ;
Huang, David Y. C. .
PLOS ONE, 2012, 7 (09)