Convergence of the implicit filtering method for constrained optimization of noisy functions

被引:0
作者
Xiu, Naihua [1 ]
Zhang, Jianzhong
Wang, Zhouhong
机构
[1] Beijing Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
convergence theory; implicit filtering; noisy optimization; projection;
D O I
10.1080/01630560701190125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop convergence theory of the implicit filtering method for solving the box constrained optimization whose objective function includes a smooth term and a noisy term. It is shown that under certain assumption on the noisy function, the sequence of projected gradients on the smooth function produced by the method goes to zero. Moreover, it is shown that if the smooth function is convex and the noisy function decays near optimality, the whole sequence of iterates converges to a solution of the concerned problem and possesses the finite identification for the optimal active set under the nondegenerate assumption. Finally, preliminary numerical results are reported.
引用
收藏
页码:127 / 147
页数:21
相关论文
共 23 条
  • [1] A direct search algorithm for optimization with noisy function evaluations
    Anderson, EJ
    Ferris, MC
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) : 837 - 857
  • [2] [Anonymous], 1999, ITERATIVE METHODS OP
  • [3] Solution of a Groundwater Control Problem with Implicit Filtering
    Battermann, Astrid
    Gablonsky, Joerg M.
    Patrick, Alton
    Kelley, Carl T.
    Kavanagh, Kathleen R.
    Coffey, Todd
    Miller, Cass T.
    [J]. OPTIMIZATION AND ENGINEERING, 2002, 3 (02) : 189 - 199
  • [4] GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD
    BERTSEKAS, DP
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) : 174 - 183
  • [5] ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS
    BURKE, JV
    MORE, JJ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) : 1197 - 1211
  • [6] PROJECTED GRADIENT METHODS FOR LINEARLY CONSTRAINED PROBLEMS
    CALAMAI, PH
    MORE, JJ
    [J]. MATHEMATICAL PROGRAMMING, 1987, 39 (01) : 93 - 116
  • [7] Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization
    Carter, R. G.
    Gablonsky, J. M.
    Patrick, A.
    Kelley, C. T.
    Eslinger, O. J.
    [J]. OPTIMIZATION AND ENGINEERING, 2001, 2 (02) : 139 - 157
  • [8] Optimization of Automotive Valve Train Components with Implicit Filtering
    Choi, T. D.
    Eslinger, O. J.
    Kelley, C. T.
    David, J. W.
    Etheridge, M.
    [J]. OPTIMIZATION AND ENGINEERING, 2000, 1 (01) : 9 - 27
  • [9] Superlinear convergence and implicit filtering
    Choi, TD
    Kelley, CT
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) : 1149 - 1162
  • [10] DAVID JW, 1996, MODELING CI SI ENG, P189