On the norm of the hyperinterpolation operator on the d-dimensional cube

被引:13
作者
Wang, Heping [1 ]
Wang, Kai [2 ]
Wang, Xiaoli [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, BCMIIS, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Hyperinterpolation; Operator norm; Projection; Regular condition; GENERALIZED HYPERINTERPOLATION; APPROXIMATION; SPHERE;
D O I
10.1016/j.camwa.2014.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the asymptotic order of the operator norm of the hyperinterpolation operator on the cube I-d = [-1, 1](d), d >= 2 with respect to the measure d mu(x) = Pi(d)(i=1) dx(i)/pi root 1-x(i)(2). This gives an affirmative answer to a conjecture raised by Caliari et al. (2008). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:632 / 638
页数:7
相关论文
共 16 条
[1]   Hyperinterpolation in the cube [J].
Caliari, Marco ;
De Marchi, Stefano ;
Vianello, Marco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (11) :2490-2497
[2]   Hyperinterpolation on the square [J].
Caliari, Marco ;
De Marchi, Stefano ;
Vianello, Marco .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 210 (1-2) :78-83
[3]   Hyper2d: A numerical code for hyperinterpolation on rectangles [J].
Caliari, Marco ;
Vianello, Marco ;
De Marchi, Stefano ;
Montagna, Roberto .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) :1138-1147
[4]   On generalized hyperinterpolation on the sphere [J].
Dai, Feng .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2931-2941
[5]   New cubature formulae and hyperinterpolation in three variables [J].
De Marchi, Stefano ;
Vianello, Marco ;
Xu, Yuan .
BIT NUMERICAL MATHEMATICS, 2009, 49 (01) :55-73
[6]   On the norm of the hyperinterpolation operator on the unit disc and its use for the solution of the nonlinear Poisson equation [J].
Hansen, Olaf ;
Atkinson, Kendall ;
Chien, David .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) :257-283
[7]  
HESSE K., 2006, Frontiers in Interpolation and Approximation (Dedicated to the Memory of Ambikeshwar Sharma), P213
[8]   The uniform norm of hyperinterpolation on the unit sphere in an arbitrary number of dimensions [J].
Le Gia, T ;
Sloan, IH .
CONSTRUCTIVE APPROXIMATION, 2001, 17 (02) :249-265
[9]   Generalized hyperinterpolation on the sphere and the Newman-Shapiro operators [J].
Reimer, M .
CONSTRUCTIVE APPROXIMATION, 2002, 18 (02) :183-203
[10]   Hyperinterpolation on the sphere at the minimal projection order [J].
Reimer, M .
JOURNAL OF APPROXIMATION THEORY, 2000, 104 (02) :272-286