On Tuza's Conjecture for Triangulations and Graphs with Small Treewidth

被引:3
作者
Botler, F. [1 ]
Fernandes, C. G. [2 ]
Gutierrez, J. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Programa Engn Sistemas & Comp, Rio De Janeiro, Brazil
[2] Univ Sao Paulo, Dept Ciencia Comp, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Triangle transversal; triangle packing; treewidth; triangulation; COVERING TRIANGLES; PACKING;
D O I
10.1016/j.entcs.2019.08.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Tuza (1981) conjectured that the cardinality tau(G) of a minimum set of edges that intersects every triangle of a graph G is at most twice the cardinality nu(G) of a maximum set of edge-disjoint triangles of G. In this paper we present three results regarding Tuza's Conjecture. We verify it for graphs with treewidth at most 6; and we show that tau(G) <= 3/2 nu(G) for every planar triangulation G different from K-4; and that tau(G) <= 9/5 nu(G) + 1/5 if G is a maximal graph with treewidth 3.
引用
收藏
页码:171 / 183
页数:13
相关论文
共 15 条
  • [1] Tuza's Conjecture is Asymptotically Tight for Dense Graphs
    Baron, Jacob D.
    Kahn, Jeff
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (05) : 645 - 667
  • [2] A partial k-arboretum of graphs with bounded treewidth
    Bodlaender, HL
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) : 1 - 45
  • [3] Bondy U. S. R., 2008, Graph theory
  • [4] On colouring the nodes of a network
    Brooks, RL
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 : 194 - 197
  • [5] Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles
    Chen, Xujin
    Diao, Zhuo
    Hu, Xiaodong
    Tang, Zhongzheng
    [J]. Combinatorial Algorithms, 2016, 9843 : 266 - 277
  • [6] Packing and Covering Triangles in Planar Graphs
    Cui, Qing
    Haxell, Penny
    Ma, Will
    [J]. GRAPHS AND COMBINATORICS, 2009, 25 (06) : 817 - 824
  • [7] Gross JL, 2014, ARS MATH CONTEMP, V7, P379
  • [8] Packing and covering triangles in graphs
    Haxell, PE
    [J]. DISCRETE MATHEMATICS, 1999, 195 (1-3) : 251 - 254
  • [9] Packing and covering triangles in tripartite graphs
    Haxell, PE
    Kohayakawa, Y
    [J]. GRAPHS AND COMBINATORICS, 1998, 14 (01) : 1 - 10
  • [10] Packing and Covering Triangles in K 4-free Planar Graphs
    Haxell, Penny
    Kostochka, Alexandr
    Thomasse, Stephan
    [J]. GRAPHS AND COMBINATORICS, 2012, 28 (05) : 653 - 662