On the formulation of cost functions for torque-optimized control of rigid bodies

被引:1
作者
O'Reilly, Oliver M. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Kinetic modeling and control of biological systems; Model formulation; Modeling for control optimization; Rotations; Torques;
D O I
10.1016/j.automatica.2014.08.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of controlling the attitude of a rigid body, this communique uses recent results on representations of torques (moments) to establish cost functions. The resulting cost functions are both properly invariant under whatever choice of Euler angles is used to parameterize the rotation of the rigid body and have transparent physical interpretations. The function is related to existing works in geometric control theory and applications of optimal control theory to biomechanical systems. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2723 / 2725
页数:3
相关论文
共 8 条
[1]  
[Anonymous], 2008, INTERMEDIATE DYNAMIC
[2]   GEOMETRIC STRUCTURE-PRESERVING OPTIMAL CONTROL OF A RIGID BODY [J].
Bloch, A. M. ;
Hussein, I. I. ;
Leok, M. ;
Sanyal, A. K. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2009, 15 (03) :307-330
[3]   Models for the design of bioinspired robot eyes [J].
Cannata, Giorgio ;
Maggiali, Marco .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (01) :27-44
[4]   A Geometric Approach to Head/Eye Control [J].
Ghosh, Bijoy K. ;
Wijayasinghe, Indika B. ;
Kahagalage, Sanath D. .
IEEE ACCESS, 2014, 2 :316-332
[5]  
O'Reilly O. M., 2007, ASME J APPL MECH, V74, P1
[6]   On Representations for Joint Moments Using a Joint Coordinate System [J].
O'Reilly, Oliver M. ;
Sena, Mark P. ;
Feeley, Brian T. ;
Lotz, Jeffrey C. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (11)
[7]   Potential and optimal control of human head movement using Tait-Bryan parametrization [J].
Wijayasinghe, Indika ;
Ruths, Justin ;
Buettner, Ulrich ;
Ghosha, Bijoy K. ;
Glasauer, Stefan ;
Kremmyda, Olympia ;
Li, Jr-Shin .
AUTOMATICA, 2014, 50 (02) :519-529
[8]   A geometrical approach to the study of the Cartesian stiffness matrix [J].
Zefran, M ;
Kumar, V .
JOURNAL OF MECHANICAL DESIGN, 2002, 124 (01) :30-38