On the non-linear stability of a continuous duopoly model with constant conjectural variation

被引:15
作者
Torcicollo, Isabella [1 ]
机构
[1] CNR, Ist Applicaz Calcolo Mauro Picone, Via P Castellino 111, I-80125 Naples, Italy
关键词
Non-linear duopoly game; Conjectural variation model; Bounded rationality; Continuous models; Non-linear stability; REACTION-DIFFUSION SYSTEM; L-2-STABILITY ANALYSIS; DYNAMICS; GAME; PDES;
D O I
10.1016/j.ijnonlinmec.2016.01.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper concerns a continuous model governed by a ODE system originated by a discrete duopoly model with bounded rationality, based on constant conjectural variation. The aim of this paper is to show (i) the existence of an absorbing set in the phase space; (ii) linear stability analysis of the critical points of the system; (iii) non-linear, global asymptotic stability of equilibrium of constant conjectural variation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 29 条
[1]   On the analysis of stability, bifurcation, chaos and chaos control of Kopel map [J].
Agiza, HN .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1909-1916
[2]   Nonlinear dynamics in the Cournot duopoly game with heterogeneous players [J].
Agiza, HN ;
Elsadany, AA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 320 :512-524
[3]  
Bischi G.-I., 2006, Chaos Comp. Lett, V2, P43
[4]  
Bischi GI, 1999, ADV DYNAMIC GAMES AP, V5
[5]  
Bowley A.L., 1924, MATH GROUNDWORK EC
[6]   On the stability of vertical constant throughflows for binary mixtures in porous layers [J].
Capone, F. ;
De Cataldis, V. ;
De Luca, R. ;
Torcicollo, I. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2014, 59 :1-8
[7]   Longtime behavior of vertical throughflows for binary mixtures in porous layers [J].
Capone, Florinda ;
De Luca, Roberta ;
Torcicollo, Isabella .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 52 :1-7
[9]  
Cournot A.-A., 1838, Recherches sur les principes mathmatiques de la thorie des richesses par Augustin Cournot
[10]  
De Angelis M., 2013, NONLINEAR DYN SYST T, V13, P217