Formation of singularities for a kind of quasilinear non-strictly hyperbolic system

被引:10
作者
Wang, LB [1 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
关键词
formation of singularity; quasilinear non-strictly hyperbolic system; weak linear degeneracy;
D O I
10.1142/S0252959902000407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author gets a blow-up result of C-1 solution to the Cauchy problem for a first order quasilinear non-strictly hyperbolic system in one space dimension.
引用
收藏
页码:439 / 454
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1994, RES APPL MATH
[2]   CONTRACTIVE METRICS FOR NONLINEAR HYPERBOLIC SYSTEMS [J].
BRESSAN, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (02) :409-421
[3]  
Ciarlet P. G., 1988, STUDIES MATH ITS APP, V20, DOI DOI 10.1016/S0168-2024(08)70061-4
[4]  
HORMANDER L, 1985, 5 I MITT LEFFL
[5]   FORMATION OF SINGULARITIES IN ONE-DIMENSIONAL NONLINEAR-WAVE PROPAGATION [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (03) :377-405
[6]   Life-span of classical solutions to quasilinear hyperbolic systems with slow decay initial data [J].
Kong, DX .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2000, 21 (04) :413-440
[7]  
Li TT, 1997, NONLINEAR ANAL-THEOR, V28, P1299
[8]  
LI TT, 1994, COMMUN PART DIFF EQ, V19, P1263
[9]   Breakdown of classical solutions to quasilinear hyperbolic systems [J].
Li, TT ;
Kong, DX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :407-437
[10]  
LI TT, 1999, NEW APPROACHES NONLI, P203