Dynamics of SecY Translocons with Translocation-Defective Mutations

被引:44
作者
Bondar, Ana-Nicoleta [1 ,2 ]
del Val, Coral [3 ]
Freites, J. Alfredo [1 ,2 ,4 ,5 ]
Tobias, Douglas J. [2 ,4 ,5 ]
White, Stephen H. [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Ctr Biomembrane Syst, Irvine, CA 92697 USA
[3] Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, Spain
[4] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Inst Surface & Interface Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
SIGNAL SEQUENCE RECOGNITION; PROTEIN-CONDUCTING CHANNEL; ESCHERICHIA-COLI SECY; PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; MEMBRANE-PROTEIN; TRANSMEMBRANE SEGMENTS; SUPPRESSOR MUTATIONS; RIBOSOME-BINDING; PRLA;
D O I
10.1016/j.str.2010.04.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SecY/Sec61 translocon complex, located in the endoplasmic reticulum membrane of eukaryotes (Sec61) or the plasma membrane of prokaryotes (SecY), mediates the transmembrane secretion or insertion of nascent proteins. Mutations that permit the secretion of nascent proteins with defective signal sequences (Prl-phenotype), or interfere with the transmembrane orientation of newly synthesized protein segments, can affect protein topogenesis. The crystallographic structure of SecYE beta from Methanococcus jannaschii revealed widespread distribution of mutations causing topogenesis defects, but not their molecular mechanisms. Based upon prolonged molecular dynamics simulations of wildtype M. jannaschii SecYE beta and an extensive sequence-conservation analysis, we show that the closed state of the translocon is stabilized by hydrogen-bonding interactions of numerous highly conserved amino acids. Perturbations induced by mutation at various locations are rapidly relayed to the plug segment that seals the wild-type closed-state translocon, leading to displacement and increased hydration of the plug.
引用
收藏
页码:847 / 857
页数:11
相关论文
共 49 条
[31]   Scalable molecular dynamics with NAMD [J].
Phillips, JC ;
Braun, R ;
Wang, W ;
Gumbart, J ;
Tajkhorshid, E ;
Villa, E ;
Chipot, C ;
Skeel, RD ;
Kalé, L ;
Schulten, K .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1781-1802
[32]   Signal sequence recognition in posttranslational protein transport across the yeast ER membrane [J].
Plath, K ;
Mothes, W ;
Wilkinson, BM ;
Stirling, CJ ;
Rapoport, TA .
CELL, 1998, 94 (06) :795-807
[33]   Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex [J].
Raden, D ;
Song, WQ ;
Gilmore, R .
JOURNAL OF CELL BIOLOGY, 2000, 150 (01) :53-64
[34]   The promiscuous and specific sides of SecB [J].
Randall, LL ;
Hardy, SJS .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (12) :1077-1079
[35]   Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes [J].
Rapoport, Tom A. .
NATURE, 2007, 450 (7170) :663-669
[36]   A large conformational change couples the ATP binding site of SecA to the SecY protein channel [J].
Robson, Alice ;
Booth, Antonia E. G. ;
Gold, Vicki A. M. ;
Clarke, Anthony R. ;
Collinson, Ian .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 374 (04) :965-976
[37]   Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex [J].
Robson, Alice ;
Carr, Beatrice ;
Sessions, Richard B. ;
Collinson, Ian .
FEBS LETTERS, 2009, 583 (01) :207-212
[38]   NUMERICAL-INTEGRATION OF CARTESIAN EQUATIONS OF MOTION OF A SYSTEM WITH CONSTRAINTS - MOLECULAR-DYNAMICS OF N-ALKANES [J].
RYCKAERT, JP ;
CICCOTTI, G ;
BERENDSEN, HJC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (03) :327-341
[39]   Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein [J].
Sadlish, H ;
Pitonzo, D ;
Johnson, AE ;
Skach, WR .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (10) :870-878