Pull-back of currents by holomorphic maps

被引:43
作者
Dinh, Tien-Cuong
Sibony, Nessim
机构
[1] Inst Math Jussieu, F-75013 Paris, France
[2] Ctr Univ Paris Sud, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1007/s00229-007-0103-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the pull-back operator, associated to a meromorphic transform, on several types of currents. We also give a simple proof to a version of a classical theorem on the extension of currents.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 22 条
[1]   PLURISUBHARMONIC CURRENTS AND THEIR EXTENSION ACROSS ANALYTIC SUBSETS [J].
ALESSANDRINI, L ;
BASSANELLI, G .
FORUM MATHEMATICUM, 1993, 5 (06) :577-602
[2]  
Alessandrini L, 2003, OSAKA J MATH, V40, P717
[3]   A CUTOFF THEOREM FOR PLURISUBHARMONIC CURRENTS [J].
BASSANELLI, G .
FORUM MATHEMATICUM, 1994, 6 (05) :567-595
[4]  
CHEM SS, 1969, GLOBAL ANAL, P119
[5]   Extension of plurisubharmonic currents [J].
Dabbek, K ;
Elkhadhra, F ;
Mir, HE .
MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) :455-481
[6]  
Dinh TC, 2006, COMMENT MATH HELV, V81, P221
[7]   Distribution of preimages and periodic points of a polynomial correspondence [J].
Dinh, TC .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2005, 133 (03) :363-394
[8]   A superior milestone for the topological entropy of a rational application [J].
Dinh, TC ;
Sibony, N .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1637-1644
[9]   Multivalued meromorphic application suites and current laminar [J].
Dinh T.-C. .
The Journal of Geometric Analysis, 2005, 15 (2) :207-227
[10]   Green currents for holomorphic automorphisms of compact Kahler manifolds [J].
Dinh, TC ;
Sibony, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (02) :291-312