Simulating bosonic Chern insulators in one-dimensional optical superlattices

被引:16
作者
Chen, Yu-Lian [1 ,2 ]
Zhang, Guo-Qing [1 ,2 ]
Zhang, Dan-Wei [1 ,2 ]
Zhu, Shi-Liang [1 ,2 ,3 ,4 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, GPETR Ctr Quantum Precis Measurement, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, SPTE, Guangzhou 510006, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
关键词
QUANTIZED HALL CONDUCTANCE; TOPOLOGICAL QUANTUM MATTER; BOSE-HUBBARD MODEL; EDGE STATES; REALIZATION; ELECTRONS; GASES; PHASE;
D O I
10.1103/PhysRevA.101.013627
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the topological properties of an extended Bose-Hubbard model with cyclically modulated hopping and on-site potential parameters, which can be realized with ultracold bosonic atoms in a one-dimensional optical superlattice. We show that the interacting bosonic chain at half filling and in the deep Mott insulating regime can simulate bosonic Chern insulators with a topological phase diagram similar to that of the Haldane model of noninteracting fermions. Furthermore, we explore the topological properties of the ground state by calculating the many-body Chern number, the quasiparticle energy spectrum with gapless edge modes, the topological pumping of the interacting bosons, and the topological phase transition from normal (trivial) to topological Mott insulators. We also present the global phase diagram of the many-body ground state, which contains a superfluid phase and two Mott insulating phases with trivial (a zero Chern number) and nontrivial topologies (a nonzero Chern number), respectively.
引用
收藏
页数:9
相关论文
共 105 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]   Strong correlation effects on topological quantum phase transitions in three dimensions [J].
Amaricci, A. ;
Budich, J. C. ;
Capone, M. ;
Trauzettel, B. ;
Sangiovanni, G. .
PHYSICAL REVIEW B, 2016, 93 (23)
[4]   First-Order Character and Observable Signatures of Topological Quantum Phase Transitions [J].
Amaricci, A. ;
Budich, J. C. ;
Capone, M. ;
Trauzettel, B. ;
Sangiovanni, G. .
PHYSICAL REVIEW LETTERS, 2015, 114 (18)
[5]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[6]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/NPHYS2790, 10.1038/nphys2790]
[7]   Colloquium: Topological band theory [J].
Bansil, A. ;
Lin, Hsin ;
Das, Tanmoy .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[8]   First-order topological quantum phase transition in a strongly correlated ladder [J].
Barbarino, Simone ;
Sangiovanni, Giorgio ;
Budich, Jan Carl .
PHYSICAL REVIEW B, 2019, 99 (07)
[9]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[10]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466