Modulation solutions for nematicon propagation in nonlocal liquid crystals

被引:81
作者
Minzoni, Antonmaria A.
Smyth, Noel F.
Worthy, Annette L.
机构
[1] Univ Edinburgh, Sch Math, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1364/JOSAB.24.001549
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The propagation of solitary waves, so-called nematicons, in a nonlinear nematic liquid crystal is considered in the nonlocal regime. Approximate modulation equations governing the evolution of input beams into steady nematicons are derived by using suitable trial functions in a Lagrangian formulation of the equations for a nematic liquid crystal. The variational equations are then extended to include the effect of diffractive loss as the beam evolves. It is found that the nonlocal nature of the interaction between the light and the nematic has a significant effect on the form of this diffractive radiation. Furthermore, it is this shed radiation that allows the input beam to evolve to a steady nematicon. Finally, excellent agreement is found between solutions of the modulation equations and numerical solutions of the nematic liquid-crystal equations. (c) 2007 Optical Society of America.
引用
收藏
页码:1549 / 1556
页数:8
相关论文
共 16 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
Assanto G, 2003, OPT PHOTONICS NEWS, V14, P44, DOI 10.1364/OPN.14.2.000044
[3]   Observation of optical spatial solitons in a highly nonlocal medium [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (11) :113902-1
[4]   Route to nonlocality and observation of accessible solitons [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (07)
[5]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[6]   Optical beams in lossy non-local Kerr media [J].
Huang, Y ;
Guo, Q ;
Cao, JN .
OPTICS COMMUNICATIONS, 2006, 261 (01) :175-180
[7]   SOLITON EVOLUTION AND RADIATION LOSS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
KATH, WL ;
SMYTH, NF .
PHYSICAL REVIEW E, 1995, 51 (02) :1484-1492
[8]   Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media [J].
Królikowski, W ;
Bang, O ;
Nikolov, NI ;
Neshev, D ;
Wyller, J ;
Rasmussen, JJ ;
Edmundson, D .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (05) :S288-S294
[9]   SOLITON STABILITY IN PLASMAS AND HYDRODYNAMICS [J].
KUZNETSOV, EA ;
RUBENCHIK, AM ;
ZAKHAROV, VE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 142 (03) :103-165
[10]   Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells [J].
Peccianti, M ;
De Rossi, A ;
Assanto, G ;
De Luca, A ;
Umeton, C ;
Khoo, IC .
APPLIED PHYSICS LETTERS, 2000, 77 (01) :7-9