Consistent Sub-Decision Network for Low-Quality Masked Face Recognition

被引:9
作者
Zhao, Weisong [1 ,2 ]
Zhu, Xiangyu [4 ,5 ]
Shi, Haichao [3 ]
Zhang, Xiao-Yu [3 ]
Lei, Zhen [4 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
[4] Chinese Acad Sci, Inst Automat, CBSR NLPR, Beijing, Peoples R China
[5] Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[6] Chinese Acad Sci, Hong Kong Inst Sci & Innovat, Ctr Artificial Intelligence & Robot, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Face recognition; Faces; Feature extraction; Facial features; Training; Knowledge engineering; Drives; COVID-19; masked face recognition; low-quality;
D O I
10.1109/LSP.2022.3170246
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The COVID-19 pandemic makes wearing masks mandatory in supermarkets, pharmacies, public transport, etc. Existing facial recognition systems encounter severe performance degradation as the masks occlude key facial regions. Recently, simulation-based methods are proposed to generate masked faces from unmasked faces. However, among simulated faces, there are low-quality samples with negative occlusion, which leads to ambiguous or absent facial features. In this paper, we propose a consistent sub-decision network to obtain sub-decisions that correspond to different facial regions and constrain sub-decisions by weighted bidirectional KL divergence to make the network concentrate on the upper faces without occlusion. In addition, we perform knowledge distillation to drive the masked face embeddings towards an approximation of the original data distribution to mitigate the information loss. Experiments show that the proposed method performs better than the baseline on public masked face recognition datasets, i.e., RMFD, MFR2, and MLFW.
引用
收藏
页码:1147 / 1151
页数:5
相关论文
共 31 条
[1]  
Anwar Aqeel, 2020, Masked Face Recognition for Secure Authentication
[2]   MFR 2021: Masked Face Recognition Competition [J].
Boutros, Fadi ;
Damer, Naser ;
Kolf, Jan Niklas ;
Raja, Kiran ;
Kirchbuchner, Florian ;
Ramachandra, Raghavendra ;
Kuijper, Arjan ;
Fang, Pengcheng ;
Zhang, Chao ;
Wang, Fei ;
Montero, David ;
Aginako, Naiara ;
Sierra, Basilio ;
Nieto, Marcos ;
Erakin, Mustafa Ekrem ;
Demir, Ugur ;
Ekenel, Hazim Kemal ;
Kataoka, Asaki ;
Ichikawa, Kohei ;
Kubo, Shizuma ;
Zhang, Jie ;
He, Mingjie ;
Han, Dan ;
Shan, Shiguang ;
Grm, Klemen ;
Struc, Vitomir ;
Seneviratne, Sachith ;
Kasthuriarachchi, Nuran ;
Rasnayaka, Sanka ;
Neto, Pedro C. ;
Sequeira, Ana F. ;
Pinto, Joao Ribeiro ;
Saffari, Mohsen ;
Cardoso, Jaime S. .
2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), 2021,
[3]  
Damer N, 2020, Biometrics Special I, VP-306
[4]   Extended evaluation of the effect of real and simulated masks on face recognition performance [J].
Damer, Naser ;
Boutros, Fadi ;
Suessmilch, Marius ;
Kirchbuchner, Florian ;
Kuijper, Arjan .
IET BIOMETRICS, 2021, 10 (05) :548-561
[5]   MFCosface: A Masked-Face Recognition Algorithm Based on Large Margin Cosine Loss [J].
Deng, Hongxia ;
Feng, Zijian ;
Qian, Guanyu ;
Lv, Xindong ;
Li, Haifang ;
Li, Gang .
APPLIED SCIENCES-BASEL, 2021, 11 (16)
[6]   ArcFace: Additive Angular Margin Loss for Deep Face Recognition [J].
Deng, Jiankang ;
Guo, Jia ;
Xue, Niannan ;
Zafeiriou, Stefanos .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4685-4694
[7]  
Ding F., 2020, P 28 ACM INT C MULT, P2281
[8]   Towards NIR-VIS Masked Face Recognition [J].
Du, Hang ;
Shi, Hailin ;
Liu, Yinglu ;
Zeng, Dan ;
Mei, Tao .
IEEE SIGNAL PROCESSING LETTERS, 2021, 28 :768-772
[9]   Generate to Adapt: Resolution Adaption Network for Surveillance Face Recognition [J].
Fang, Han ;
Deng, Weihong ;
Zhong, Yaoyao ;
Hu, Jiani .
COMPUTER VISION - ECCV 2020, PT XV, 2020, 12360 :741-758
[10]  
Gal Y, 2016, PR MACH LEARN RES, V48