A Study on Practically Unlimited Endurance of STT-MRAM

被引:76
作者
Kan, Jimmy J. [1 ]
Park, Chando [1 ]
Ching, Chi [2 ]
Ahn, Jaesoo [2 ]
Xie, Yuan [3 ]
Pakala, Mahendra [2 ]
Kang, Seung H. [1 ]
机构
[1] Qualcomm Technol Inc, San Diego, CA 92121 USA
[2] Appl Mat Inc, Sunnyvale, CA 94085 USA
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93111 USA
关键词
Cache memory; practically unlimited endurance; spin-transfer torque magnetoresistive random-access memory (STT-MRAM); time-dependent dielectric breakdown (TDDB); unified memory; BREAKDOWN;
D O I
10.1109/TED.2017.2731959
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic tunnel junctions integrated for spin-transfer torque magnetoresistive random-access memory are by far the only known solid-state memory element that can realize a combination of fast read/write speed and high endurance. This paper presents a comprehensive validation of high endurance of deeply scaled perpendicular magnetic tunnel junctions (pMTJs) in light of various potential spin-transfer torque magnetoresistive random-access memory (STT-MRAM) use cases. A statistical study is conducted on the time-dependent dielectric breakdown (TDDB) properties and the dependence of the pMTJ lifetime on voltage, polarity, pulsewidth, duty cycle, and temperature. The experimental results coupled with TDDB models project >10(15) write cycles. Furthermore, this work reports system-level workload characterizations to understand the practical endurance requirements for realistic memory applications. The results suggest that the cyclingendurance of STT-MRAM is "practically unlimited," which exceeds the requirements of various memory use cases, including high-performance applications such as CPU level-2 and level-3 caches.
引用
收藏
页码:3639 / 3646
页数:8
相关论文
共 19 条
[1]   Barrier Breakdown Mechanisms in MgO-Based Magnetic Tunnel Junctions and Correlation With Low-Frequency Noise [J].
Amara, S. ;
Sousa, R. C. ;
Bea, H. ;
Baraduc, C. ;
Dieny, B. .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) :4340-4343
[2]  
[Anonymous], 2008, AAPPS bulletin
[3]  
Chen YL, 2010, PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INNOVATION AND MANAGEMENT, VOLS I AND II, P148, DOI 10.1109/ICIII.2010.41
[4]   Scalability and Design-Space Analysis of a 1T-1MTJ Memory Cell for STT-RAMs [J].
Dorrance, Richard ;
Ren, Fengbo ;
Toriyama, Yuta ;
Hafez, Amr Amin ;
Yang, Chih-Kong Ken ;
Markovic, Dejan .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (04) :878-887
[5]   Security RBSG: Protecting Phase Change Memory with Security-Level Adjustable Dynamic Mapping [J].
Huang, Fangting ;
Feng, Dan ;
Xia, Wen ;
Zhou, Wen ;
Zhang, Yucheng ;
Fu, Min ;
Jiang, Chuntao ;
Zhou, Yukun .
2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, :1081-1090
[6]  
Kan JJ, 2016, INT EL DEVICES MEET
[7]  
Kang LQ, 2014, ADV BUS FINANCE, V1, P131, DOI [10.5729/abf.vol1.131, 10.1145/2627369.2631641]
[8]   Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity [J].
Kang, S. H. ;
Lee, K. .
ACTA MATERIALIA, 2013, 61 (03) :952-973
[9]   A new spin on magnetic memories [J].
Kent, Andrew D. ;
Worledge, Daniel C. .
NATURE NANOTECHNOLOGY, 2015, 10 (03) :187-191
[10]   Basic principles of STT-MRAM cell operation in memory arrays [J].
Khvalkovskiy, A. V. ;
Apalkov, D. ;
Watts, S. ;
Chepulskii, R. ;
Beach, R. S. ;
Ong, A. ;
Tang, X. ;
Driskill-Smith, A. ;
Butler, W. H. ;
Visscher, P. B. ;
Lottis, D. ;
Chen, E. ;
Nikitin, V. ;
Krounbi, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (07)