Functional Microanatomical Model of Meissner Corpuscle From Finite Element Model to Mechano-Transduction

被引:6
|
作者
Vodlak, Teja [1 ,2 ]
Vidrih, Zlatko [1 ,2 ]
Pirih, Primoz [2 ]
Skorjanc, Ales [2 ]
Presern, Janez [2 ]
Rodic, Tomaz [1 ,2 ]
机构
[1] Univ Ljubljana, Dept Met & Mat, Fac Nat Sci & Engn, Askerceva Cesta 12, Ljubljana 1000, Slovenia
[2] Swansea Univ, Zienkiewicz Ctr Computat Engn, Coll Engn, Swansea SA2 8PP, W Glam, Wales
来源
HAPTICS: NEUROSCIENCE, DEVICES, MODELING, AND APPLICATIONS, PT II | 2014年 / 8619卷
关键词
Meissner corpuscle; Multi-scale FEM; Touch; Tactile sensibility; Cutaneous mechanoreceptors; Mechano-transduction; SKIN; MECHANICS; CURRENTS; CHANNEL;
D O I
10.1007/978-3-662-44196-1_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multi-scale framework of human tactile sensation has been developed. The framework consists of two mechanical stages and a post-processing stage. In the first stage, a fingerpad and a stimulus are modelled. The second stage contains a slab of skin containing a Meissner corpuscle. The mechanical output of the second stage is processed by a mechanosensory channel activation model and a spike generator. To our knowledge, this is the first framework linking different levels of sensory processing from mechano-transduction to spike-train comparison. The results of the model are compared to the microneurographical data of a RA1 mechanosensory afferent fibre. The framework could be used as a tool for studying the finger pad-surface interaction in scientific and industrial communities related to touch.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条
  • [41] Finite element model of ferroelastic polycrystals
    Univ of California, Santa Barbara, United States
    Int J Solids Struct, 10 (1541-1556):
  • [42] An advanced finite element model of IPMC
    Pugal, D.
    Kasemagi, H.
    Kruusmaa, M.
    Aabloo, A.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2008, 2008, 6927
  • [43] A REPORT ON FINITE ELEMENT MODEL DESIGN
    Wang Huatong (Shandong College of Oceanology
    ChineseJournalofOceanologyandLimnology, 1984, (01) : 61 - 72
  • [44] Finite element model of pipeline dynamics
    Sanada, Kazushi
    Kitagawa, Ato
    Proceedings of the SICE Annual Conference, 1994, : 837 - 842
  • [45] A finite element model of ultrasonic extrusion
    Lucas, M.
    Daud, Y.
    7TH INTERNATIONAL CONFERENCE ON MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS, 2009, 181
  • [46] Finite element model of magnetoconvection of a ferrofluid
    Snyder, SM
    Cader, T
    Finlayson, BA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 262 (02) : 269 - 279
  • [47] The foundation of Nonlinear finite element model
    Wang, Bing
    Liu, Xiao
    Zhao, Baidong
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING IV, 2014, 580-583 : 3075 - 3078
  • [48] Finite element model of piezoelectric resonator
    Maryska, J
    Novák, J
    Rálek, P
    Sembera, J
    CURRENT TRENDS IN SCIENTIFIC COMPUTING, 2003, 329 : 263 - 270
  • [49] A finite element model of ferroelectric polycrystals
    Hwang, SC
    McMeeking, RM
    FERROELECTRICS, 1998, 211 (1-4) : 177 - 194
  • [50] Finite Element Method for Schnakenberg Model
    Hepson, Ozlem Ersoy
    Dag, Idris
    MATHEMATICAL METHODS IN ENGINEERING: APPLICATIONS IN DYNAMICS OF COMPLEX SYSTEMS, 2019, 24 : 41 - 51