Functional Microanatomical Model of Meissner Corpuscle From Finite Element Model to Mechano-Transduction

被引:6
|
作者
Vodlak, Teja [1 ,2 ]
Vidrih, Zlatko [1 ,2 ]
Pirih, Primoz [2 ]
Skorjanc, Ales [2 ]
Presern, Janez [2 ]
Rodic, Tomaz [1 ,2 ]
机构
[1] Univ Ljubljana, Dept Met & Mat, Fac Nat Sci & Engn, Askerceva Cesta 12, Ljubljana 1000, Slovenia
[2] Swansea Univ, Zienkiewicz Ctr Computat Engn, Coll Engn, Swansea SA2 8PP, W Glam, Wales
来源
HAPTICS: NEUROSCIENCE, DEVICES, MODELING, AND APPLICATIONS, PT II | 2014年 / 8619卷
关键词
Meissner corpuscle; Multi-scale FEM; Touch; Tactile sensibility; Cutaneous mechanoreceptors; Mechano-transduction; SKIN; MECHANICS; CURRENTS; CHANNEL;
D O I
10.1007/978-3-662-44196-1_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multi-scale framework of human tactile sensation has been developed. The framework consists of two mechanical stages and a post-processing stage. In the first stage, a fingerpad and a stimulus are modelled. The second stage contains a slab of skin containing a Meissner corpuscle. The mechanical output of the second stage is processed by a mechanosensory channel activation model and a spike generator. To our knowledge, this is the first framework linking different levels of sensory processing from mechano-transduction to spike-train comparison. The results of the model are compared to the microneurographical data of a RA1 mechanosensory afferent fibre. The framework could be used as a tool for studying the finger pad-surface interaction in scientific and industrial communities related to touch.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条
  • [31] A finite element model for draping simulation
    Bracht, U.
    Jiao, Y.
    WT Werkstattstechnik, 2017, 107 (03): : 118 - 123
  • [32] A finite element model for strand cables
    Nawrocki, A
    Labrosse, M
    INNOVATION IN COMPUTER METHODS FOR CIVIL AND STRUCTURAL ENGINEERING, 1997, : 1 - 11
  • [33] A Finite Element Model for Trigger Finger
    Relf, Helena, I
    Barberio, Carla G.
    Espino, Daniel M.
    PROSTHESIS, 2020, 2 (03): : 168 - 184
  • [34] A FINITE ELEMENT MODEL OF A SURGICAL KNOT
    Alden, Arz Y. Qwam
    Geeslin, Andrew G.
    King, Jeffrey C.
    Gustafson, Peter A.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 3, 2018,
  • [35] A finite element model of ferroelastic polycrystals
    Hwang, SC
    McMeeking, RM
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1999, 36 (10) : 1541 - 1556
  • [36] A finite element model for ultrasonic cutting
    Lucas, Margaret
    MacBeath, Alan
    McCulloch, Euan
    Cardoni, Andrea
    ULTRASONICS, 2006, 44 : E503 - E509
  • [37] Dislocation model in finite element method
    Kishida, Michiya
    Sasaki, Kazuaki
    Ekida, Yutaka
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63 (609): : 1076 - 1082
  • [38] The antioscillator model and the finite element method
    Jacquelin, E.
    Laine, J. -P.
    Massenzio, M.
    JOURNAL OF SOUND AND VIBRATION, 2009, 324 (1-2) : 317 - 331
  • [39] Finite element analysis for the ligament model
    Kawauchi, Yu
    Ikeura, Naohiko
    Hirokawa, Shunji
    2008, Japan Society of Mechanical Engineers (74):
  • [40] Finite Element Coiled Cochlea Model
    Isailovic, Velibor
    Nikolic, Milica
    Milosevic, Zarko
    Saveljic, Igor
    Nikolic, Dalibor
    Radovic, Milos
    Filipovic, Nenad
    MECHANICS OF HEARING: PROTEIN TO PERCEPTION, 2015, 1703