Note on constructing a family of solvable sine-type difference equations

被引:2
作者
Ahmed, Ahmed El-Sayed [1 ]
Iricanin, Bratislav [2 ,3 ]
Kosmala, Witold [4 ]
Stevic, Stevo [5 ,6 ]
Smarda, Zdenek [7 ]
机构
[1] Taif Univ, Fac Sci, Math Dept, POB 11099, At Taif 21944, Saudi Arabia
[2] Univ Belgrade, Fac Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11000, Serbia
[3] Univ Kragujevac, Fac Mech & Civil Engn Kraljevo, Kraljevo, Serbia
[4] Appalachian State Univ, Deptartment Math Sci, Boone, NC 28608 USA
[5] Serbian Acad Arts & Sci, Math Inst, Knez Mihailova 36-3, Belgrade 11000, Serbia
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[7] Brno Univ Technol, Fac Elect Engn & Commun, Dept Math, Tech 3058-10, CZ-61600 Brno, Czech Republic
关键词
Solvable difference equation; Closed-form formula; Sine-type difference equation; INVARIANTS; SYSTEMS; SOLVABILITY;
D O I
10.1186/s13662-021-03348-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a family of first order sine-type difference equations solvable in closed form in a constructive way, and we present a general solution to each of the equations.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
Ahlfors LV., 1979, COMPLEX ANAL
[2]  
[Anonymous], 2020, Chebyshev polynomials
[3]  
Bashmakov M. I., 1982, Zadachi po Matematike. Algebra i Analiz
[4]   On some systems of difference equations [J].
Berg, Lothar ;
Stevic, Stevo .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :1713-1718
[5]  
BERNOULLI D., 1732, Commentarii Acad. Petropol., VIII, P85
[6]  
Boole G., 1880, TREATSIE CALCULUS FI
[7]  
Danilov Y.A., 1984, MNOGOCHLENY CHEBISHE
[8]  
De Moivre A, 1756, The Doctrine of chances, V3rd
[9]  
DE MOIVRE A., 1730, Miscellanea analytica de seriebus et quadraturis
[10]  
Egorov A.A., 1988, ZADACHI VSESOYUZNYH