INFINITELY MANY SOLUTIONS FOR A NONLOCAL TYPE PROBLEM WITH SIGN-CHANGING WEIGHT FUNCTION

被引:0
作者
Azroul, Elhoussine [1 ]
Benkirane, Abdelmoujib [1 ]
Srati, Mohammed [1 ]
Torres, Cesar [2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Matemat, Lab Math Anal & Applicat, Fes, Morocco
[2] Univ Nacl Trujillo, Dept Matemat, Av Juan Pablo II S-N, Trujillo, Peru
关键词
Fractional Orlicz-Sobolev spaces; critical point theorems; variational methods; LINEAR ELLIPTIC-EQUATIONS; NONLINEARITY; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of weak solutions for a fractional type problem driven by a nonlocal operator of elliptic type (-Delta)(alpha 1)(s) u - lambda a(2)(vertical bar u vertical bar)u = f(x, u) + g(x)vertical bar u vertical bar(q(x)-2)u in Omega u=0 in R-N \ Omega. Our approach is based on critical point theorems and variational methods.
引用
收藏
页数:15
相关论文
共 34 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]   Phase transition with the line-tension effect [J].
Alberti, G ;
Bouchitte, G ;
Seppecher, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (01) :1-46
[3]   Fractional elliptic problem in exterior domains with nonlocal Neumann condition [J].
Alves, Claudianor O. ;
Torres Ledesma, Cesar E. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[4]   Existence of solutions for a class of fractional elliptic problems on exterior domains [J].
Alves, Claudianor O. ;
Bisci, Giovanni Molica ;
Torres Ledesma, Cesar E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) :7183-7219
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
[Anonymous], 2004, Mediterr. J. Math.
[7]   On a class of fractional p(x) -Kirchhoff type problems [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2021, 100 (02) :383-402
[8]   THREE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN [J].
Azroul, E. ;
Benkirane, A. ;
Srati, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (04) :821-822
[9]   EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :539-555
[10]   Three solutions for a Schrodinger-Kirchhoff type equation involving nonlocal fractional integro-defferential operators [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Srati, Mohammed .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (04) :1915-1932