Ant Colony Optimization Algorithm and Artificial Immune System Applied to a Robot Route

被引:3
作者
Ribeiro, J. M. S. [1 ]
Silva, M. F. [1 ]
Santos, M. F. [2 ]
Vidal, V. F. [1 ]
Honorio, L. M. [1 ]
Silva, L. A. Z. [1 ]
Rezende, H. B. [1 ]
Santos Neto, A. F. [2 ]
Mercorelli, P. [3 ]
Pancoti, A. A. N. [1 ]
机构
[1] Univ Fed Juiz de Fora, Juiz de Fora, MG, Brazil
[2] CEFET MG, Jose Peres 558, Leopoldina, MG, Brazil
[3] Leuphana Univ Lueneburg, Volgershall 1, D-21339 Luneburg, Germany
来源
2019 20TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC) | 2019年
关键词
Heuristics Techniques; Ant Colony Optimization; Artificial Immune System; Robot; HYBRID;
D O I
10.1109/carpathiancc.2019.8765910
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This Article aims to introduce two meta-heuristics techniques: Ant Colony Optimization (ACO) and Artificial Immune System (AIS) to find the best route for a robot. The ACO is an algorithm based on the ant food search process, and the AIS is inspired by the defending mechanism of the human organism. In order to illustrate and compare the potential of these techniques, this paper applies both techniques in a problem of determining the shortest possible route for a robot without hitting any obstacles in three different maps. According to the tests, the ACO shows better results regarding the number of iterations to reach the global optimum, while the AIS shows better results when it comes to the processing time. From the result, it can be seen that the ACO found a solution to all maps demonstrating it is an excellent choice for this problem type.
引用
收藏
页码:675 / 680
页数:6
相关论文
共 29 条
  • [1] Using ant colony optimization to solve hybrid flow shop scheduling problems
    Alaykyran, Kemal
    Engin, Orhan
    Doyen, Alper
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2007, 35 (5-6) : 541 - 550
  • [2] Gadi MFA, 2008, LECT NOTES COMPUT SC, V5132, P119, DOI 10.1007/978-3-540-85072-4_11
  • [3] Solving multiobjective optimization problems using an artificial immune system
    Coello C.A.C.
    Cortés N.C.
    [J]. Genetic Programming and Evolvable Machines, 2005, 6 (2) : 163 - 190
  • [4] Ant system: Optimization by a colony of cooperating agents
    Dorigo, M
    Maniezzo, V
    Colorni, A
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (01): : 29 - 41
  • [5] Dorigo M., 2006, TECH REP
  • [6] Multiobjective immune algorithm with nondominated neighbor-based selection
    Gong, Maoguo
    Jiao, Licheng
    Du, Haifeng
    Bo, Liefeng
    [J]. EVOLUTIONARY COMPUTATION, 2008, 16 (02) : 225 - 255
  • [7] Honório LM, 2008, LECT NOTES COMPUT SC, V5132, P166, DOI 10.1007/978-3-540-85072-4_15
  • [8] Ant colony optimization combined with taboo search for the job shop scheduling problem
    Huang, Kuo-Ling
    Liao, Ching-Jong
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (04) : 1030 - 1046
  • [9] A comparative study of Artificial Bee Colony algorithm
    Karaboga, Dervis
    Akay, Bahriye
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 108 - 132
  • [10] A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources
    Kefayat, M.
    Ara, A. Lashkar
    Niaki, S. A. Nabavi
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 92 : 149 - 161