Effective Passivation with Size-Matched Alkyldiammonium Iodide for High-Performance Inverted Perovskite Solar Cells

被引:85
作者
Liu, Sanwan [1 ]
Guan, Xinyu [1 ]
Xiao, Wenshan [2 ]
Chen, Rui [1 ]
Zhou, Jing [1 ]
Ren, Fumeng [1 ]
Wang, Jianan [1 ]
Chen, Weitao [1 ]
Li, Sibo [3 ]
Qiu, Longbin [3 ]
Zhao, Yan [2 ,4 ]
Liu, Zonghao [1 ,5 ]
Chen, Wei [1 ,5 ,6 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Wuhan Natl Lab Optoelect WNLO, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
[3] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[4] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Hubei, Peoples R China
[5] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
[6] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
alkyldiammonium ligands; defect passivation; perovskite solar cells; stability; EFFICIENT; STABILITY; SUPPRESSION;
D O I
10.1002/adfm.202205009
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic ammonium salts have been widely used for defect passivation to suppress nonradiative charge recombination in perovskite solar cells (PSCs). However, they are prone to form undesirable in-plane favored 2D perovskites with poor charge transport capability that hamper device performance. Herein, the defects passivation role of alkyldiammonium including 1.6-hexamethylenediamine dihydriodide (HDAI(2)), 1,3-propanediamine dihydriodide (PDAI(2)), and 1.4-butanediamine dihydriodide (BDAI(2)) for formamidinium-cesium perovskite is systematically investigated. With help of density functional theory (DFT) calculations, BDA with suitable size can synergistically passivate two defect sites on perovskite surfaces, showing the best defect passivation effect among the above three alkyldiammonium salts. Perovskite films based on BDAI(2) modification are found to keep the 3D perovskite phase with considerably reduced trap-state density, and enhanced carrier extraction. As a result, the BDAI(2)-modified devices deliver impressive efficiencies of 23.1% and 20.9% for inverted PSCs on the rigid and flexible substrates, respectively. Moreover, the corresponding encapsulated rigid devices maintain 92% of the initial efficiency after operating under continuous 1-sun illumination with the maximum power point tracking for 1000 h. Furthermore, the mechanical flexibility of the BDAI(2)-modified flexible device is also improved due to the release of residual stress.
引用
收藏
页数:12
相关论文
共 50 条
[41]   High-Performance Flexible Perovskite Solar Cells Enabled by Low-Temperature ALD-Assisted Surface Passivation [J].
Jin, Teng-Yu ;
Li, Wei ;
Li, Yan-Qing ;
Luo, Yu-Xin ;
Shen, Yang ;
Cheng, Li-Peng ;
Tang, Jian-Xin .
ADVANCED OPTICAL MATERIALS, 2018, 6 (24)
[42]   Effective Passivation of Perovskite Solar Cells Involving a Unique Secondary Ammonium Halide Modulator [J].
Cui, Hong ;
Ning, Yunhao ;
Yang, Yuxuan ;
He, Dingqian ;
Chen, Wentao ;
Huang, Yuqiong ;
Zhao, Peng ;
Feng, Yaqing ;
Zhang, Bao .
SOLAR RRL, 2023, 7 (10)
[43]   Rationalization of passivation strategies toward high-performance perovskite solar cells [J].
Zhang, Zhihao ;
Qiao, Lu ;
Meng, Ke ;
Long, Run ;
Chen, Gang ;
Gao, Peng .
CHEMICAL SOCIETY REVIEWS, 2023, 52 (01) :163-195
[44]   Buried interface passivation strategies for high-performance perovskite solar cells [J].
Wang, Ya ;
Han, Meidouxue ;
Wang, Rongbo ;
Zhao, Juntao ;
Zhang, Jiawei ;
Ren, Huizhi ;
Hou, Guofu ;
Ding, Yi ;
Zhao, Ying ;
Zhang, Xiaodan .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (16) :8573-8598
[45]   Suppressing Ion Migration by Synergistic Engineering of Anion and Cation toward High-Performance Inverted Perovskite Solar Cells and Modules [J].
Zhang, Zuolin ;
Li, Mengjia ;
Li, Ru ;
Zhuang, Xinmeng ;
Wang, Chenglin ;
Shang, Xueni ;
He, Dongmei ;
Chen, Jiangzhao ;
Chen, Cong .
ADVANCED MATERIALS, 2024, 36 (24)
[46]   Additive-assisted defect passivation of perovskite with metformin hydrochloride: toward high-performance p-i-n perovskite solar cells [J].
Huang, Zhezhi ;
Fu, Jianfei ;
Ji, Wenxi ;
Zhang, Longgui ;
Chen, Qiaoyun ;
Zhang, Zelong ;
Zhou, Yi ;
Song, Bo .
JOURNAL OF PHYSICS-ENERGY, 2022, 4 (04)
[47]   Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance [J].
Wu, Tianhao ;
Li, Xing ;
Qi, Yabing ;
Zhang, Yiqiang ;
Han, Liyuan .
CHEMSUSCHEM, 2021, 14 (20) :4354-4376
[48]   Efficient Passivation with Lead Pyridine-2-Carboxylic for High-Performance and Stable Perovskite Solar Cells [J].
Fu, Sheng ;
Li, Xiaodong ;
Wan, Li ;
Wu, Yulei ;
Zhang, Wenxiao ;
Wang, Yueming ;
Bao, Qinye ;
Fang, Junfeng .
ADVANCED ENERGY MATERIALS, 2019, 9 (35)
[49]   Interface passivation strategies for high-performance perovskite solar cells using two-dimensional perovskites [J].
Huang, He ;
Zhang, Xiaobo ;
Zhou, Wencai ;
Huang, Yong ;
Zheng, Zilong ;
Chen, Xiaoqing ;
Zhang, Yongzhe ;
Yan, Hui .
MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (21) :3528-3557
[50]   Linked Nickel Oxide/Perovskite Interface Passivation for High-Performance Textured Monolithic Tandem Solar Cells [J].
Zhumagali, Shynggys ;
Isikgor, Furkan H. ;
Maity, Partha ;
Yin, Jun ;
Ugur, Esma ;
De Bastiani, Michele ;
Subbiah, Anand S. ;
Mirabelli, Alessandro James ;
Azmi, Randi ;
Harrison, George T. ;
Troughton, Joel ;
Aydin, Erkan ;
Liu, Jiang ;
Allen, Thomas ;
Rehman, Atteq Ur ;
Baran, Derya ;
Mohammed, Omar F. ;
De Wolf, Stefaan .
ADVANCED ENERGY MATERIALS, 2021, 11 (40)