Effective Passivation with Size-Matched Alkyldiammonium Iodide for High-Performance Inverted Perovskite Solar Cells

被引:85
作者
Liu, Sanwan [1 ]
Guan, Xinyu [1 ]
Xiao, Wenshan [2 ]
Chen, Rui [1 ]
Zhou, Jing [1 ]
Ren, Fumeng [1 ]
Wang, Jianan [1 ]
Chen, Weitao [1 ]
Li, Sibo [3 ]
Qiu, Longbin [3 ]
Zhao, Yan [2 ,4 ]
Liu, Zonghao [1 ,5 ]
Chen, Wei [1 ,5 ,6 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Wuhan Natl Lab Optoelect WNLO, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
[3] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[4] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Hubei, Peoples R China
[5] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
[6] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
alkyldiammonium ligands; defect passivation; perovskite solar cells; stability; EFFICIENT; STABILITY; SUPPRESSION;
D O I
10.1002/adfm.202205009
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic ammonium salts have been widely used for defect passivation to suppress nonradiative charge recombination in perovskite solar cells (PSCs). However, they are prone to form undesirable in-plane favored 2D perovskites with poor charge transport capability that hamper device performance. Herein, the defects passivation role of alkyldiammonium including 1.6-hexamethylenediamine dihydriodide (HDAI(2)), 1,3-propanediamine dihydriodide (PDAI(2)), and 1.4-butanediamine dihydriodide (BDAI(2)) for formamidinium-cesium perovskite is systematically investigated. With help of density functional theory (DFT) calculations, BDA with suitable size can synergistically passivate two defect sites on perovskite surfaces, showing the best defect passivation effect among the above three alkyldiammonium salts. Perovskite films based on BDAI(2) modification are found to keep the 3D perovskite phase with considerably reduced trap-state density, and enhanced carrier extraction. As a result, the BDAI(2)-modified devices deliver impressive efficiencies of 23.1% and 20.9% for inverted PSCs on the rigid and flexible substrates, respectively. Moreover, the corresponding encapsulated rigid devices maintain 92% of the initial efficiency after operating under continuous 1-sun illumination with the maximum power point tracking for 1000 h. Furthermore, the mechanical flexibility of the BDAI(2)-modified flexible device is also improved due to the release of residual stress.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation [J].
Niu, Tianqi ;
Lu, Jing ;
Munir, Rahim ;
Li, Jianbo ;
Barrit, Dounya ;
Zhang, Xu ;
Hu, Hanlin ;
Yang, Zhou ;
Amassian, Aram ;
Zhao, Kui ;
Liu, Shengzhong .
ADVANCED MATERIALS, 2018, 30 (16)
[32]   Effective surface passivation for stable and high-performance inverted CsPbI2Br perovskite solar cells with efficiency over 15% [J].
Wang, Lang ;
She, Xingchen ;
Li, Wei ;
Cao, Shihan ;
Gong, Qiuyue ;
Zhong, Zhenpeng ;
Wang, Zhijun ;
Li, Jie ;
Liu, Hui ;
Wang, Xiao ;
Sun, Hui ;
Yang, Dingyu ;
Zhang, Jun ;
Liu, Xin .
MATERIALS TODAY CHEMISTRY, 2024, 36
[33]   A synchronous defect passivation strategy for constructing high-performance and stable planar perovskite solar cells [J].
Sun, Yansen ;
Pang, Zhenyu ;
Quan, Yingnan ;
Han, Donglai ;
Zhang, Xinyuan ;
Ge, Xin ;
Wang, Fengyou ;
Sun, Yunfei ;
Yang, Jinghai ;
Yang, Lili .
CHEMICAL ENGINEERING JOURNAL, 2021, 413
[34]   Review of Defect Passivation for NiOx-Based Inverted Perovskite Solar Cells [J].
Zhu, Ruixue ;
Guan, Nianci ;
Wang, Dourong ;
Bao, Yaqi ;
Wu, Zhongbin ;
Song, Lin .
ACS APPLIED ENERGY MATERIALS, 2023, 6 (04) :2098-2121
[35]   Universal Surface Passivation of Organic-Inorganic Halide Perovskite Films by Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells [J].
Abate, Seid Yimer ;
Zhang, Qiqi ;
Qi, Yifang ;
Nash, Jawnaye ;
Gollinger, Kristine ;
Zhu, Xianchun ;
Han, Fengxiang ;
Pradhan, Nihar ;
Dai, Qilin .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (24) :28044-28059
[36]   Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells [J].
Zhang, Moyao ;
Chen, Qi ;
Xue, Rongming ;
Zhan, Yu ;
Wang, Cheng ;
Lai, Junqi ;
Yang, Jin ;
Lin, Hongzhen ;
Yao, Jianlin ;
Li, Yaowen ;
Chen, Liwei ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2019, 10 (1)
[37]   Benzimidazole Based Hole-Transporting Materials for High-performance Inverted Perovskite Solar Cells [J].
Tingare, Yogesh S. ;
Su, Chaochin ;
Lin, Ja-Hon ;
Hsieh, Yi-Chun ;
Lin, Hong-Jia ;
Hsu, Ya-Chun ;
Li, Meng-Che ;
Chen, Guan-Lin ;
Tseng, Kai-Wei ;
Yang, Yi-Hsuan ;
Wang, Leeyih ;
Tsai, Hsinhan ;
Nie, Wanyi ;
Li, Wen-Ren .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (33)
[38]   Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules [J].
Chen, Ruihao ;
Wang, Yongke ;
Nie, Siqing ;
Shen, Hui ;
Hui, Yong ;
Peng, Jian ;
Wu, Binghui ;
Yin, Jun ;
Li, Jing ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (28) :10624-10632
[39]   A theoretical study for high-performance inverted p-i-n architecture perovskite solar cells with cuprous iodide as hole transport material [J].
Haider, Syed Zulqarnain ;
Anwar, Hafeez ;
Manzoor, Sehrish ;
Ismail, Ahmad G. ;
Wang, Mingqing .
CURRENT APPLIED PHYSICS, 2020, 20 (09) :1080-1089
[40]   Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells [J].
Jiang, Zhixuan ;
Fu, Jianfei ;
Zhang, Jiajia ;
Chen, Qiaoyun ;
Zhang, Zelong ;
Ji, Wenxi ;
Wang, Ailian ;
Zhang, Taoyi ;
Zhou, Yi ;
Song, Bo .
CHEMICAL ENGINEERING JOURNAL, 2022, 436