On the existence of positive solution for a class of singular systems involving quasilinear operators

被引:27
作者
Alves, Claudianor O.
Correa, Francisco J. S. A. [1 ]
机构
[1] Fed Univ Para, Dept Matemat, BR-66075110 Belem, Para, Brazil
[2] Univ Fed Campina Grande, Dept Matemat & Estatist, BR-58109970 Campina Grande, PB, Brazil
关键词
D O I
10.1016/j.amc.2006.07.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of positive solution for the following class of singular systems {-Delta(p)u = 1/v(1) + v(alpha 71), -Delta(q)v = 1/u(2) + u(alpha 72) in Omega, u, v > 0 in Omega, u = v = 0 on partial derivative Omega, where Omega subset of R-N, N >= 2, is a smooth bounded domain, Delta(p) and Delta(q) are, respectively, the p-Laplacian and q-Laplacian, with p, q > 1, and alpha(1), alpha(2), gamma(1) and gamma(2) are positive constants. The main tools used are a result due to Rabinowitz and a Hardy-Sobolev inequality. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 19 条
[1]   Existence theory for single and multiple solutions to singular positone boundary value problems [J].
Agarwal, RP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :393-414
[2]  
ALONSO IP, 1997, 2 SCH NONL FUNCT AN
[3]  
Alves CO, 2005, ADV NONLINEAR STUD, V5, P265
[4]  
Alves CO., 1998, Abstr Appl Anal, V3, P411, DOI DOI 10.1155/S1085337598000633
[5]   A singular Gierer-Meinhardt system of elliptic equations [J].
Choi, YS ;
McKenna, PJ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (04) :503-522
[6]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[7]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029
[8]   A-PRIORI ESTIMATES AND APPLICATIONS TO EXISTENCE-NONEXISTENCE FOR A SEMILINEAR ELLIPTIC SYSTEM [J].
DELPINO, MA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (01) :77-129
[9]   AN ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY [J].
DIAZ, JI ;
MOREL, JM ;
OSWALD, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1987, 12 (12) :1333-1344
[10]  
Fulks W., 1960, Osaka Math J, V12, P1