On the existence of positive solution for a class of singular systems involving quasilinear operators

被引:27
作者
Alves, Claudianor O.
Correa, Francisco J. S. A. [1 ]
机构
[1] Fed Univ Para, Dept Matemat, BR-66075110 Belem, Para, Brazil
[2] Univ Fed Campina Grande, Dept Matemat & Estatist, BR-58109970 Campina Grande, PB, Brazil
关键词
D O I
10.1016/j.amc.2006.07.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of positive solution for the following class of singular systems {-Delta(p)u = 1/v(1) + v(alpha 71), -Delta(q)v = 1/u(2) + u(alpha 72) in Omega, u, v > 0 in Omega, u = v = 0 on partial derivative Omega, where Omega subset of R-N, N >= 2, is a smooth bounded domain, Delta(p) and Delta(q) are, respectively, the p-Laplacian and q-Laplacian, with p, q > 1, and alpha(1), alpha(2), gamma(1) and gamma(2) are positive constants. The main tools used are a result due to Rabinowitz and a Hardy-Sobolev inequality. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 19 条