Channel hybrid plasmonic modes in dielectric-loaded graphene groove waveguides

被引:8
作者
Wan, Peng [1 ]
Yang, Cuihong [1 ]
Liu, Zhen [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Surface plasmons; Channel waveguide; Hybrid modes; SUBWAVELENGTH CONFINEMENT; METAL-SURFACE; PROPAGATION; POLARITONS; OPTICS; WEDGE;
D O I
10.1016/j.optcom.2018.03.031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dielectric-loaded graphene groove waveguide (DLGGW) structure is designed and the channel hybrid plasmonic modes are investigated in the terahertz domain. The proposed structure could effectively suppress the mode field confinement with relative low transmission loss due to the strong coupling between the dielectric mode and the channel graphene plasmonic mode. A typical propagation length is 37.8 mu m, and optical field is confined into an ultra-small area of approximately 52 mu m(2) at 1.5 THz. By changing the size of cylinder, the angle of the graphene groove, and the thickness of dielectric coating layer, the compromise between confinement and loss could be balanced flexibly. Unlike plasmons in noble metals, the propagation loss in DLGGW structure could be tuned by the graphene conductivity. Moreover, because of the imaginary part of graphene conductivity being positive, the proposed waveguide can propagate in a large terahertz frequency regime. This waveguide shows great applications in optical integrated devices, such as detectors, sensors and spectroscopy.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 50 条
[1]   Terahertz dielectric waveguides [J].
Atakaramians, Shaghik ;
Afshar, Shahraam V. ;
Monro, Tanya M. ;
Abbott, Derek .
ADVANCES IN OPTICS AND PHOTONICS, 2013, 5 (02) :169-215
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-Embedded-Metal Grooves for Low-Loss Propagation at 1550 nm [J].
Bian, Yusheng ;
Zheng, Zheng ;
Zhao, Xin ;
Su, Yalin ;
Liu, Lei ;
Liu, Jiansheng ;
Zhu, Jinsong ;
Zhou, Tao .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (03)
[4]   Coplanar Plasmonic Nanolasers Based on Edge-Coupled Hybrid Plasmonic Waveguides [J].
Bian, Yusheng ;
Zheng, Zheng ;
Liu, Ya ;
Zhu, Jinsong ;
Zhou, Tao .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (13) :884-886
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Effective-index modeling of channel plasmon polaritons [J].
Bozhevolnyi, Sergey I. .
OPTICS EXPRESS, 2006, 14 (20) :9467-9476
[7]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[8]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[9]   Terahertz vibrational absorption spectroscopy using microstrip-line waveguides [J].
Byrne, M. B. ;
Cunningham, J. ;
Tych, K. ;
Burnett, A. D. ;
Stringer, M. R. ;
Wood, C. D. ;
Dazhang, L. ;
Lachab, M. ;
Linfield, E. H. ;
Davies, A. G. .
APPLIED PHYSICS LETTERS, 2008, 93 (18)
[10]   A symmetric terahertz graphene-based hybrid plasmonic waveguide [J].
Chen, Ming ;
Sheng, Pengchi ;
Sun, Wei ;
Cai, Jianjin .
OPTICS COMMUNICATIONS, 2016, 376 :41-46