Using energy balance method to study the thermal behavior of PV panels under time-varying field conditions

被引:53
作者
Aly, Shahzada Pamir [1 ]
Ahzi, Said [1 ]
Barth, Nicolas [1 ]
Abdallah, Amir [1 ]
机构
[1] HBKU, QEERI Qatar, Qatar Fdn, Doha, Qatar
关键词
Thermal model; PV cell temperature; Finite difference; Numerical method; Analytical model; Empirical model; PHOTOVOLTAIC MODULE; HEAT-TRANSFER; MODEL; TEMPERATURE; PERFORMANCE; COLLECTOR; SYSTEM; DEPENDENCE; SILICON; FLOW;
D O I
10.1016/j.enconman.2018.09.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
A precise estimate of PV panels temperature is crucial for accurately assessing their electrical performance. Therefore, in this study, one of the main aims has been to significantly improve the prediction accuracy of the PV cell temperature, by using realistic boundary conditions. Unlike previous thermal models in the literature, which usually focus on its mere application, a detailed step by step development and numerical implementation of the complete model has also been provided in great details in this work. The developed model is transient, so it can fully simulate the thermal performance of any PV panel under time-varying field conditions. Once the model is defined for a specific PV panel, the only external inputs it needs are the total incident solar irradiation, wind speed and the ambient temperature. The model has been adequately validated through PV panel's datasheet provided information, literature data and against a versatile set of experimental data under various weather conditions. After thorough validations, the developed model was compared to various other widely used empirical, analytical and numerical thermal models from the literature. The comparison shows that by using realistic boundary conditions, the developed thermal model has far better prediction accuracy than other models from the literature. The methodology presented in this study is completely generic. That is, though it has been implemented and validated here for a silicon-based PV module the approach may be used to model any freestanding plane PV surface, with appropriate modifications to layer thicknesses and material properties. A range of weather conditions may also be accommodated.
引用
收藏
页码:246 / 262
页数:17
相关论文
共 44 条
[11]   Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules [J].
Du, Ying ;
Tao, Wusong ;
Liu, Yafeng ;
Jiang, Jianhui ;
Huang, Haisheng .
SOLAR ENERGY, 2017, 146 :257-263
[12]  
Duffie JA, 2013, SOLAR ENGINEERING OF THERMAL PROCESSES, 4TH EDITION, P1, DOI 10.1002/9781118671603
[13]   SIMPLIFIED METHOD FOR PREDICTING PHOTO-VOLTAIC ARRAY OUTPUT [J].
EVANS, DL .
SOLAR ENERGY, 1981, 27 (06) :555-560
[14]  
EVANS DL, 1977, SOL ENERGY, V20, P37
[15]   Assessing the outdoor operating temperature of photovoltaic modules [J].
Faiman, David .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (04) :307-315
[16]  
Gehrlicher Solar company, 2018, GEHRL SOL
[17]   OPTICAL-PROPERTIES OF INTRINSIC SILICON AT 300 K [J].
GREEN, MA ;
KEEVERS, MJ .
PROGRESS IN PHOTOVOLTAICS, 1995, 3 (03) :189-192
[18]   Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors [J].
Guarracino, Ilaria ;
Mellor, Alexander ;
Ekins-Daukes, Nicholas J. ;
Markides, Christos N. .
APPLIED THERMAL ENGINEERING, 2016, 101 :778-795
[19]   A thermal model for photovoltaic systems [J].
Jones, AD ;
Underwood, CP .
SOLAR ENERGY, 2001, 70 (04) :349-359
[20]   Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination [J].
Kaplani, E. ;
Kaplanis, S. .
SOLAR ENERGY, 2014, 107 :443-460