Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application

被引:25
作者
Abraime, B. [1 ,2 ]
Mahmoud, A. [3 ]
Boschini, F. [3 ]
Tamerd, M. Ait [2 ]
Benyoussef, A. [1 ,2 ]
Hamedoun, M. [1 ]
Xiao, Y. [4 ,5 ]
El Kenz, A. [2 ]
Mounkachi, O. [1 ,2 ]
机构
[1] MAScIR Fdn, Mat & Nanomat Ctr, BP 10100, Rabat, Morocco
[2] Mohammed V Univ, Fac Sci, Lab Condensed Matter & Interdisciplinary Sci LaMC, BP 1014, Rabat, Morocco
[3] Univ Liege, Inst Chem B6, CESAM, GREENMAT, B-4000 Liege, Belgium
[4] Forschungszentrum Julich, JARA FIT, JCNS, D-52425 Julich, Germany
[5] Forschungszentrum Julich, JARA FIT, PGI, D-52425 Julich, Germany
关键词
Ferrites; Permanent magnet; Magnetic properties; (BH)(max); FERRITE NANOPARTICLES; NIFE2O4; SIZE; TEMPERATURE;
D O I
10.1016/j.jmmm.2018.07.063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we report the behavior of maximum energy product (BH)(max) of cobalt ferrite nanopowder towards the variation of calcinations temperature. The studied CoFe2O4 nanopowder was synthesized using sol-gel autocombustion method. X-ray diffraction, scanning electron microscopy, Mossbauer spectroscopy and super-conducting quantum interference device magnetometer techniques were used to characterize crystal structure, phase composition, morphology and magnetic properties. By changing the calcination temperature (T = 600 degrees C, 800 degrees C, 1000 degrees C and 1100 degrees C), the structural and magnetic properties of the compounds could be tuned. The magnetic properties results show that the highest value of (BH)(max )is close to 0.35 MGOe observed for the sample calcined at T = 800 degrees C. These results suggest that (BH)(max) of cobalt ferrite nanopowder can be enhanced by optimizing synthesis steps.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 36 条
[11]   Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach [J].
Kumar, Yogendra ;
Shirage, Parasharam M. .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (09) :4840-4851
[12]   Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite [J].
Leite, G. C. P. ;
Chagas, E. F. ;
Pereira, R. ;
Prado, R. J. ;
Terezo, A. J. ;
Alzamora, M. ;
Baggio-Saitovitch, E. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (18) :2711-2716
[13]   Magnetic properties of nanostructured materials [J].
LesliePelecky, DL ;
Rieke, RD .
CHEMISTRY OF MATERIALS, 1996, 8 (08) :1770-1783
[14]   Evaluation of (BH)max and magnetic anisotropy of cobalt ferrite nanoparticles synthesized in gelatin [J].
Lima, A. C. ;
Morales, M. A. ;
Araujo, J. H. ;
Soares, J. M. ;
Melo, D. M. A. ;
Carrico, A. S. .
CERAMICS INTERNATIONAL, 2015, 41 (09) :11804-11809
[15]  
Lopez H., 2013, ISRN NANOMATER, V2013
[16]   Topotaxial Phase Transformation in Cobalt Doped Iron Oxide Core/Shell Hard Magnetic Nanoparticles [J].
Lopez-Ortega, Alberto ;
Lottini, Elisabetta ;
Bertoni, Giovanni ;
de Julian Fernandez, Cesar ;
Sangregorio, Claudio .
CHEMISTRY OF MATERIALS, 2017, 29 (03) :1279-1289
[17]   Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet [J].
Lopez-Ortega, Alberto ;
Lottini, Elisabetta ;
Fernandez, Cesar de Julian ;
Sangregorio, Claudio .
CHEMISTRY OF MATERIALS, 2015, 27 (11) :4048-4056
[18]   Strongly Exchange Coupled CorelShell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets [J].
Lottini, E. ;
Lopez-Ortega, A. ;
Bertoni, G. ;
Turner, S. ;
Meledina, M. ;
Van Tendeloo, G. ;
Fernandez, C. de Julian ;
Sangregorio, C. .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4214-4222
[19]  
Lu Gan, 2016, PREPARATION CORE SHE
[20]   Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor [J].
Mouallem-Bahout, M ;
Bertrand, S ;
Peña, O .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (04) :1080-1086