Classification of gradient Kahler-Ricci solitons with vanishing B-tensor

被引:1
作者
Yang, Fei [1 ]
Zhang, Liangdi [2 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
B-tensor; Gradient Kahler-Ricci soliton; Extremal; Kahler-Einstein;
D O I
10.1016/j.geomphys.2019.103535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the Bach tensor on Riemannian manifolds, we introduce the B-tensor (B-(ij) over bar:=n+2/n del((k) over bar)del W-l((ij) over bark (l) over bar)-W(ij) over bark (l) over barR(k) over barl) on Kahler manifolds. We prove that a compact gradient kl Kahler-Ricci soliton with vanishing B-tensor is Kahler-Einstein. Moreover, we show that a complete non-compact extremal gradient shrinking Kahler-Ricci soliton with vanishing B-tensor is Kahler-Einstein. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 21 条
[2]  
BESSE A, 1987, EINSTEIN MANIFOLDS
[3]  
Calamai S, 2017, COMPLEX MANIFOLDS, V4, P179, DOI 10.1515/coma-2017-0012
[4]   ON CALABI EXTREMAL KAHLER-RICCI SOLITONS [J].
Calamai, Simone ;
Petrecca, David .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) :813-821
[5]  
Cao H.D., ARXIV09082006V1
[6]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[7]   ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1149-1169
[8]   ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2377-2391
[9]  
Cao HD, 2010, J DIFFER GEOM, V85, P175, DOI 10.4310/jdg/1287580963
[10]   ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Xiaodong ;
Wang, Biao ;
Zhang, Zhou .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) :269-282