Bounds for the faber coefficients of certain classes of functions analytic in an ellipse

被引:2
作者
Haliloglu, E
Johnston, EH
机构
[1] Isik Univ, Dept Management, TR-34398 Istanbul, Turkey
[2] Iowa State Univ Sci & Technol, Dept Math, Ames, IA 50011 USA
关键词
Faber polynomials; Faber coefficients; Jacobi elliptic; sine function;
D O I
10.1216/rmjm/1181069774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded, simply connected domain in C with 0 is an element of Omega and aOmega analytic. Let S(Omega) denote the class of functions F(z) which are analytic and univalent in Omega with F(0) = 0 and F'(0) = 1. Let {Phi(n)(z)} infinity n=0 be the Faber polynomials associated with Omega. If F(z) is an element of S(Omega), then F(z) can be expanded in a series of the form F(z) = E-n=0(infinity) An (1)n (z), z E 92 in terms of the Faber polynomials. Let [GRAPHICS] where r > 1. In this paper we obtain sharp bounds for the Faber coefficients A(0), A(1) and A(2) of functions F(z) in S(E-r) and in certain related classes.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 12 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
BIERBACH L, 1916, KOEFFIZIENTEN DERJEN, P940
[3]   The variability range of the coefficients of the power series, which do not reach a given value [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1907, 64 :95-115
[4]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[5]  
Duren P. L., 1983, Univalent functions
[6]   Generalizations of coefficient estimates for certain classes of analytic functions [J].
Haliloglu, E .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1997, 73 (06) :116-121
[7]   On the Faber coefficients of functions univalent in an ellipse [J].
Haliloglu, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (07) :2901-2916
[8]  
Lawden D.F., 1989, Applied mathematical sciences
[9]  
LOEWNER K, 1917, SB SACHS AKAD WISS, V69, P89
[10]  
Nehari Z., 1952, Conformal Mappings