Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration

被引:73
作者
Shi, Weina [1 ]
Zhang, Xiaofan [1 ]
Brillet, Jeremie [2 ]
Huang, Dekang [1 ]
Li, Man [1 ]
Wang, Mingkui [1 ]
Shen, Yan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Luoyu Rd 1037, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, 1295 Dingxi Rd, Shanghai 200050, Peoples R China
基金
瑞士国家科学基金会;
关键词
VISIBLE-LIGHT; SENSITIZED TIO2; WATER OXIDATION; MESOPOROUS WO3; PHOTOANODES; HYDROGEN; PERFORMANCE; NANOPARTICLES; NANOSHEETS; COMPOSITE;
D O I
10.1016/j.carbon.2016.04.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports on single-crystal WO3 nanoflakes decorated with carbon quantum dots (CQDs) for efficient photoelectrochemical energy conversion system. The promising photoanodes can be fabricated via seed-mediated solvothermal method in combination with subsequent impregnation-assembling. A photocurrent density of 1.46 mA cm(-2) at 1.0 V vs. Ag/AgCl can be achieved for the CQDs/WO3 electrode when performing linear sweep voltammetry measurements in 1 M H2SO4 solution under AM 1.5G illumination, which is about two times higher than that of the bare WO3 electrode. The enhancement of photoelectrochemical performance is ascribed to the enhanced light harvesting ability of CQDs and its accelerating charge transfer across the interface between CQDs/WO3 electrode and electrolyte. The improved activity indicates the potential of CQDs/WO3 as an efficient electrode for photoelectrochemical solar energy conversion. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 53 条
[1]   Fabrication and photoelectrochemical property of tungsten(VI) oxide films with a flake-wall structure [J].
Amano, Fumiaki ;
Li, Ding ;
Ohtani, Bunsho .
CHEMICAL COMMUNICATIONS, 2010, 46 (16) :2769-2771
[2]  
[Anonymous], 2011, ANGEW CHEM
[3]   Nanostructured thin-film tungsten trioxide photoanodes for solar water and sea-water splitting [J].
Augustynski, Jan ;
Solarska, Renata ;
Hagemann, Hans ;
Santato, Clara .
SOLAR HYDROGEN AND NANOTECHNOLOGY, 2006, 6340
[4]   Quasi-1D hyperbranched WO3 nanostructures for low-voltage photoelectrochemical water splitting [J].
Balandeh, Mehrdad ;
Mezzetti, Alessandro ;
Tacca, Alessandra ;
Leonardi, Silvia ;
Marra, Gianluigi ;
Divitini, Giorgio ;
Ducati, Caterina ;
Meda, Laura ;
Di Fonzo, Fabio .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (11) :6110-6117
[5]  
Berak J.M., 1970, J SOLID STATE CHEM, V2, P109, DOI [DOI 10.1016/0022-4596(70)90040-X, 10.1016/0022-4596, DOI 10.1016/0022-4596]
[6]   Carbon Dot Loading and TiO2 Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot/TiO2 Nanorod Array Nanocomposites [J].
Bian, Juncao ;
Huang, Chao ;
Wang, Lingyun ;
Hung, TakFu ;
Daoud, Walid A. ;
Zhang, Ruiqin .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (07) :4883-4890
[7]   Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting [J].
Boudoire, Florent ;
Toth, Rita ;
Heier, Jakob ;
Braun, Artur ;
Constable, Edwin C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) :2680-2688
[8]  
Brillet J, 2012, NAT PHOTONICS, V6, P823, DOI [10.1038/nphoton.2012.265, 10.1038/NPHOTON.2012.265]
[9]  
Chen X, 2011, J SOFTW, V6, P6, DOI DOI 10.1371/J0URNAL.P0NE.0021970
[10]   Niobate Nanosheets as Catalysts for Photochemical Water Splitting into Hydrogen and Hydrogen Peroxide [J].
Compton, Owen C. ;
Osterloh, Frank E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (01) :479-485